Abstract

We designed and fabricated Ge/Si avalanche photodiodes grown on silicon substrates. The mesa-type photodiodes exhibit a responsivity at 1310nm of 0.54A/W, a breakdown voltage thermal coefficient of 0.05%/°C, a 3dBbandwidth of 10GHz. The gain-bandwidth product was measured as 153GHz. The effective k value extracted from the excess noise factor was 0.1.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, "The superlattice photodetector a new avalanche photodiode with a large ionization rates ratio," Tech. Dig. Int. Electron Devices Meet. 27, 284-287 (1981).
  2. S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
    [CrossRef]
  3. J. C. Campbell, H. Nie, C. Lenox, G. Kinsey, P. Yuan, A. L. Holmes, and B. G. Streetman, "High-speed, low-noise avalanche photodiodes," Optical Fiber Communication Conference, Technical Digest Postconference Edition 37, 114-116 (2000).
  4. R. P. Webb, R. J. McIntyre, and J. Conradi, "Properties of avalanche photodiodes," RCA Rev. 35, 234-278 (1974).
  5. A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, "High Gain-Bandwidth-Product Silicon Heterointerface Photodetector," Appl. Phys. Lett. 70, 303-305 (1996).
    [CrossRef]
  6. Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
    [CrossRef]
  7. M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules," Proceeding of SiGe and Ge: Materials, Processing, and Devices 3, 75-84 (2006).
  8. Z. Huang, N. Kong, X. Guo, M. Liu, N. Duan, A. L. Beck, S. K. Banerjee, and J. C. Campbell, "21-GHz-bandwidth germanium-on-silicon photodiode using thin SiGe buffer layers," IEEE J. Sel. Top. in Quantum Electron. 12, 1450-1454 (2006).
    [CrossRef]
  9. R. G. Smith and S. R. Forrest, "Sensitivity of avalanche photodetector receivers for long-wavelength optical communications," Bell System Tech. J. 61, 2929-2945 (1982).
  10. T. R. Refaat, M. N. Abedin, and U. N. Singh, "Comparison between Ge and InGaAs APDs in the 1 to 2 ?m wavelength range," Proceeding of 2005 Quantum Electronics and Laser Science Conference (QELS), 1997-1999 (2005).
  11. Z. Huang, J. Oh, Banerjee, S. K. Banerjee, and J. C. Campbell "Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,"IEEE J. Quantum Electron. 43, 238-242 (2007).
    [CrossRef]
  12. C. L. F. Ma, M. J. Dean, L. E. Tarof, and J. C. H. Yu, "Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Trans. Electron. Devices. 42, 810-818 (1995).
    [CrossRef]
  13. K.-S. Hyun and C. -Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997).
    [CrossRef]
  14. M. Ershov and V. Ryzhii "Temperature dependence of the electron impact ionization coefficient in silicon," Semicond. Sci. Technol. 10, 138-42 (1995).
    [CrossRef]
  15. Y. K. Su, C. Y. Chang, and T. S. Wu, "Temperature dependent characteristics of a PIN avalanche photodiode(APD) in Ge, Si and GaAs," Opt. Quantum Electron. 11, 109-117 (1979).
    [CrossRef]
  16. D. J. Massey, J. P. R. David, and G. J. Rees, "Temperature dependence of impact ionization in submicrometer silicon devices," IEEE Trans. Electron. Devices 53, 2328-2334 (2006).
    [CrossRef]
  17. R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron. Devices ED-19, 703-713 (1972).
    [CrossRef]
  18. J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightwave Technol. 7, 473-478 (1989).
    [CrossRef]
  19. I. Watanabe, T. Torikai, K. Makita, K. Fukushima, and T. Uji, "Impact ionization rates in (100) Al0.48In0.52As," IEEE Electron. Device Lett. 11, 437-438 (1990).
    [CrossRef]
  20. R. B. Emmons, "Avalanche-photodiode frequency response," J. Appl. Phys. 38, 3705-3714 (1967).
    [CrossRef]

2007

Z. Huang, J. Oh, Banerjee, S. K. Banerjee, and J. C. Campbell "Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,"IEEE J. Quantum Electron. 43, 238-242 (2007).
[CrossRef]

2006

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules," Proceeding of SiGe and Ge: Materials, Processing, and Devices 3, 75-84 (2006).

D. J. Massey, J. P. R. David, and G. J. Rees, "Temperature dependence of impact ionization in submicrometer silicon devices," IEEE Trans. Electron. Devices 53, 2328-2334 (2006).
[CrossRef]

2002

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

2001

S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
[CrossRef]

1997

K.-S. Hyun and C. -Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997).
[CrossRef]

1996

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, "High Gain-Bandwidth-Product Silicon Heterointerface Photodetector," Appl. Phys. Lett. 70, 303-305 (1996).
[CrossRef]

1995

C. L. F. Ma, M. J. Dean, L. E. Tarof, and J. C. H. Yu, "Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Trans. Electron. Devices. 42, 810-818 (1995).
[CrossRef]

M. Ershov and V. Ryzhii "Temperature dependence of the electron impact ionization coefficient in silicon," Semicond. Sci. Technol. 10, 138-42 (1995).
[CrossRef]

1990

I. Watanabe, T. Torikai, K. Makita, K. Fukushima, and T. Uji, "Impact ionization rates in (100) Al0.48In0.52As," IEEE Electron. Device Lett. 11, 437-438 (1990).
[CrossRef]

1989

J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightwave Technol. 7, 473-478 (1989).
[CrossRef]

1982

R. G. Smith and S. R. Forrest, "Sensitivity of avalanche photodetector receivers for long-wavelength optical communications," Bell System Tech. J. 61, 2929-2945 (1982).

1981

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, "The superlattice photodetector a new avalanche photodiode with a large ionization rates ratio," Tech. Dig. Int. Electron Devices Meet. 27, 284-287 (1981).

1979

Y. K. Su, C. Y. Chang, and T. S. Wu, "Temperature dependent characteristics of a PIN avalanche photodiode(APD) in Ge, Si and GaAs," Opt. Quantum Electron. 11, 109-117 (1979).
[CrossRef]

1974

R. P. Webb, R. J. McIntyre, and J. Conradi, "Properties of avalanche photodiodes," RCA Rev. 35, 234-278 (1974).

1972

R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron. Devices ED-19, 703-713 (1972).
[CrossRef]

1967

R. B. Emmons, "Avalanche-photodiode frequency response," J. Appl. Phys. 38, 3705-3714 (1967).
[CrossRef]

Banerjee, J.

Z. Huang, J. Oh, Banerjee, S. K. Banerjee, and J. C. Campbell "Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,"IEEE J. Quantum Electron. 43, 238-242 (2007).
[CrossRef]

Bitter, M.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

Campbell, J. C.

S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
[CrossRef]

J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightwave Technol. 7, 473-478 (1989).
[CrossRef]

Capasso, F.

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, "The superlattice photodetector a new avalanche photodiode with a large ionization rates ratio," Tech. Dig. Int. Electron Devices Meet. 27, 284-287 (1981).

Chandrasekhar, S.

J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightwave Technol. 7, 473-478 (1989).
[CrossRef]

Chang, C. Y.

Y. K. Su, C. Y. Chang, and T. S. Wu, "Temperature dependent characteristics of a PIN avalanche photodiode(APD) in Ge, Si and GaAs," Opt. Quantum Electron. 11, 109-117 (1979).
[CrossRef]

Chetrit, Y.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules," Proceeding of SiGe and Ge: Materials, Processing, and Devices 3, 75-84 (2006).

Clawson, A. R.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

Conradi, J.

R. P. Webb, R. J. McIntyre, and J. Conradi, "Properties of avalanche photodiodes," RCA Rev. 35, 234-278 (1974).

David, J. P. R.

D. J. Massey, J. P. R. David, and G. J. Rees, "Temperature dependence of impact ionization in submicrometer silicon devices," IEEE Trans. Electron. Devices 53, 2328-2334 (2006).
[CrossRef]

Dean, M. J.

C. L. F. Ma, M. J. Dean, L. E. Tarof, and J. C. H. Yu, "Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Trans. Electron. Devices. 42, 810-818 (1995).
[CrossRef]

Dosunmu, O.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules," Proceeding of SiGe and Ge: Materials, Processing, and Devices 3, 75-84 (2006).

Emmons, R. B.

R. B. Emmons, "Avalanche-photodiode frequency response," J. Appl. Phys. 38, 3705-3714 (1967).
[CrossRef]

Ershov, M.

M. Ershov and V. Ryzhii "Temperature dependence of the electron impact ionization coefficient in silicon," Semicond. Sci. Technol. 10, 138-42 (1995).
[CrossRef]

Forrest, S. R.

R. G. Smith and S. R. Forrest, "Sensitivity of avalanche photodetector receivers for long-wavelength optical communications," Bell System Tech. J. 61, 2929-2945 (1982).

Fukushima, K.

I. Watanabe, T. Torikai, K. Makita, K. Fukushima, and T. Uji, "Impact ionization rates in (100) Al0.48In0.52As," IEEE Electron. Device Lett. 11, 437-438 (1990).
[CrossRef]

Hawkins, A. R.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, "High Gain-Bandwidth-Product Silicon Heterointerface Photodetector," Appl. Phys. Lett. 70, 303-305 (1996).
[CrossRef]

Holmes, A. L.

S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
[CrossRef]

Huang, Z.

Z. Huang, J. Oh, Banerjee, S. K. Banerjee, and J. C. Campbell "Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,"IEEE J. Quantum Electron. 43, 238-242 (2007).
[CrossRef]

Hummel, S.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

Hutchinson, A. L.

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, "The superlattice photodetector a new avalanche photodiode with a large ionization rates ratio," Tech. Dig. Int. Electron Devices Meet. 27, 284-287 (1981).

Hyun, K.-S.

K.-S. Hyun and C. -Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997).
[CrossRef]

Johnson, B. C.

J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightwave Technol. 7, 473-478 (1989).
[CrossRef]

Kang, Y.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

Li, X.

S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
[CrossRef]

Lo, Y.H.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

Ma, C. L. F.

C. L. F. Ma, M. J. Dean, L. E. Tarof, and J. C. H. Yu, "Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Trans. Electron. Devices. 42, 810-818 (1995).
[CrossRef]

Mages, P.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

Makita, K.

I. Watanabe, T. Torikai, K. Makita, K. Fukushima, and T. Uji, "Impact ionization rates in (100) Al0.48In0.52As," IEEE Electron. Device Lett. 11, 437-438 (1990).
[CrossRef]

Massey, D. J.

D. J. Massey, J. P. R. David, and G. J. Rees, "Temperature dependence of impact ionization in submicrometer silicon devices," IEEE Trans. Electron. Devices 53, 2328-2334 (2006).
[CrossRef]

McIntyre, R. J.

R. P. Webb, R. J. McIntyre, and J. Conradi, "Properties of avalanche photodiodes," RCA Rev. 35, 234-278 (1974).

R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron. Devices ED-19, 703-713 (1972).
[CrossRef]

Morse, M.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules," Proceeding of SiGe and Ge: Materials, Processing, and Devices 3, 75-84 (2006).

Oh, J.

Z. Huang, J. Oh, Banerjee, S. K. Banerjee, and J. C. Campbell "Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,"IEEE J. Quantum Electron. 43, 238-242 (2007).
[CrossRef]

Pan, Z.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

Park, C. -Y.

K.-S. Hyun and C. -Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997).
[CrossRef]

Pauchard, A.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

Qua, G. J.

J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightwave Technol. 7, 473-478 (1989).
[CrossRef]

Rees, G. J.

D. J. Massey, J. P. R. David, and G. J. Rees, "Temperature dependence of impact ionization in submicrometer silicon devices," IEEE Trans. Electron. Devices 53, 2328-2334 (2006).
[CrossRef]

Ryzhii, V.

M. Ershov and V. Ryzhii "Temperature dependence of the electron impact ionization coefficient in silicon," Semicond. Sci. Technol. 10, 138-42 (1995).
[CrossRef]

Sarid, G.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules," Proceeding of SiGe and Ge: Materials, Processing, and Devices 3, 75-84 (2006).

Sidhu, R.

S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
[CrossRef]

Smith, R. G.

R. G. Smith and S. R. Forrest, "Sensitivity of avalanche photodetector receivers for long-wavelength optical communications," Bell System Tech. J. 61, 2929-2945 (1982).

Su, Y. K.

Y. K. Su, C. Y. Chang, and T. S. Wu, "Temperature dependent characteristics of a PIN avalanche photodiode(APD) in Ge, Si and GaAs," Opt. Quantum Electron. 11, 109-117 (1979).
[CrossRef]

Sun, X.

S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
[CrossRef]

Tarof, L. E.

C. L. F. Ma, M. J. Dean, L. E. Tarof, and J. C. H. Yu, "Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Trans. Electron. Devices. 42, 810-818 (1995).
[CrossRef]

Torikai, T.

I. Watanabe, T. Torikai, K. Makita, K. Fukushima, and T. Uji, "Impact ionization rates in (100) Al0.48In0.52As," IEEE Electron. Device Lett. 11, 437-438 (1990).
[CrossRef]

Tsang, W. T.

J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightwave Technol. 7, 473-478 (1989).
[CrossRef]

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, "The superlattice photodetector a new avalanche photodiode with a large ionization rates ratio," Tech. Dig. Int. Electron Devices Meet. 27, 284-287 (1981).

Uji, T.

I. Watanabe, T. Torikai, K. Makita, K. Fukushima, and T. Uji, "Impact ionization rates in (100) Al0.48In0.52As," IEEE Electron. Device Lett. 11, 437-438 (1990).
[CrossRef]

Wang, S.

S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
[CrossRef]

Watanabe, I.

I. Watanabe, T. Torikai, K. Makita, K. Fukushima, and T. Uji, "Impact ionization rates in (100) Al0.48In0.52As," IEEE Electron. Device Lett. 11, 437-438 (1990).
[CrossRef]

Webb, R. P.

R. P. Webb, R. J. McIntyre, and J. Conradi, "Properties of avalanche photodiodes," RCA Rev. 35, 234-278 (1974).

Williams, G. F.

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, "The superlattice photodetector a new avalanche photodiode with a large ionization rates ratio," Tech. Dig. Int. Electron Devices Meet. 27, 284-287 (1981).

Wu, T. S.

Y. K. Su, C. Y. Chang, and T. S. Wu, "Temperature dependent characteristics of a PIN avalanche photodiode(APD) in Ge, Si and GaAs," Opt. Quantum Electron. 11, 109-117 (1979).
[CrossRef]

Yu, J. C. H.

C. L. F. Ma, M. J. Dean, L. E. Tarof, and J. C. H. Yu, "Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Trans. Electron. Devices. 42, 810-818 (1995).
[CrossRef]

Yu, P. K. L.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

Zheng, X. G.

S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
[CrossRef]

Appl. Phys. Lett.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, "High Gain-Bandwidth-Product Silicon Heterointerface Photodetector," Appl. Phys. Lett. 70, 303-305 (1996).
[CrossRef]

Bell System Tech. J.

R. G. Smith and S. R. Forrest, "Sensitivity of avalanche photodetector receivers for long-wavelength optical communications," Bell System Tech. J. 61, 2929-2945 (1982).

IEEE Electron. Device Lett.

I. Watanabe, T. Torikai, K. Makita, K. Fukushima, and T. Uji, "Impact ionization rates in (100) Al0.48In0.52As," IEEE Electron. Device Lett. 11, 437-438 (1990).
[CrossRef]

IEEE J. Quantum Electron.

Z. Huang, J. Oh, Banerjee, S. K. Banerjee, and J. C. Campbell "Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,"IEEE J. Quantum Electron. 43, 238-242 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y.H. Lo, "Fused InGaAs/Si Avalanche Phototodiodes With Low noise Performance," IEEE Photon. Technol. Lett. 14, 1593-1595 (2002).
[CrossRef]

S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, "Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region," IEEE Photon. Technol. Lett. 13, 1346-1348 (2001).
[CrossRef]

IEEE Trans. Electron. Devices

D. J. Massey, J. P. R. David, and G. J. Rees, "Temperature dependence of impact ionization in submicrometer silicon devices," IEEE Trans. Electron. Devices 53, 2328-2334 (2006).
[CrossRef]

R. J. McIntyre, "The distribution of gains in uniformly multiplying avalanche photodiodes: theory," IEEE Trans. Electron. Devices ED-19, 703-713 (1972).
[CrossRef]

IEEE Trans. Electron. Devices.

C. L. F. Ma, M. J. Dean, L. E. Tarof, and J. C. H. Yu, "Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes," IEEE Trans. Electron. Devices. 42, 810-818 (1995).
[CrossRef]

J. Appl. Phys.

K.-S. Hyun and C. -Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997).
[CrossRef]

R. B. Emmons, "Avalanche-photodiode frequency response," J. Appl. Phys. 38, 3705-3714 (1967).
[CrossRef]

J. Lightwave Technol.

J. C. Campbell, S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson, "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes," J. Lightwave Technol. 7, 473-478 (1989).
[CrossRef]

Materials, Processing, and Devices

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, "Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules," Proceeding of SiGe and Ge: Materials, Processing, and Devices 3, 75-84 (2006).

Opt. Quantum Electron.

Y. K. Su, C. Y. Chang, and T. S. Wu, "Temperature dependent characteristics of a PIN avalanche photodiode(APD) in Ge, Si and GaAs," Opt. Quantum Electron. 11, 109-117 (1979).
[CrossRef]

RCA Rev.

R. P. Webb, R. J. McIntyre, and J. Conradi, "Properties of avalanche photodiodes," RCA Rev. 35, 234-278 (1974).

Semicond. Sci. Technol.

M. Ershov and V. Ryzhii "Temperature dependence of the electron impact ionization coefficient in silicon," Semicond. Sci. Technol. 10, 138-42 (1995).
[CrossRef]

Tech. Dig. Int. Electron Devices Meet.

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, "The superlattice photodetector a new avalanche photodiode with a large ionization rates ratio," Tech. Dig. Int. Electron Devices Meet. 27, 284-287 (1981).

Other

J. C. Campbell, H. Nie, C. Lenox, G. Kinsey, P. Yuan, A. L. Holmes, and B. G. Streetman, "High-speed, low-noise avalanche photodiodes," Optical Fiber Communication Conference, Technical Digest Postconference Edition 37, 114-116 (2000).

Z. Huang, N. Kong, X. Guo, M. Liu, N. Duan, A. L. Beck, S. K. Banerjee, and J. C. Campbell, "21-GHz-bandwidth germanium-on-silicon photodiode using thin SiGe buffer layers," IEEE J. Sel. Top. in Quantum Electron. 12, 1450-1454 (2006).
[CrossRef]

T. R. Refaat, M. N. Abedin, and U. N. Singh, "Comparison between Ge and InGaAs APDs in the 1 to 2 ?m wavelength range," Proceeding of 2005 Quantum Electronics and Laser Science Conference (QELS), 1997-1999 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic cross-section of a GeSi SACM APD. The GeSi PIN PD used for primary photoresponsivity calibration has the same device cross section except for the p-type Si charge layer.

Fig. 2.
Fig. 2.

(a) Current- responsivity- and capacitance vs. voltage characteristics at 1310nm for a 30um-diameter APD at room temperature. (b) DC photoresponsivity and gain vs. voltage.

Fig. 3
Fig. 3

Temperature dependence of the breakdown voltage.

Fig. 4
Fig. 4

Excess noise factors versus gain. The symbols are the measurement results of a Ge/Si APD; and the solid lines are calculated values based on McIntyre’s theory [17].

Fig. 5.
Fig. 5.

RF response at 1300 nm for a 30 µm diameter device. The 3dB bandwidth is 10GHz and 9GHz for a gain of 6.5 and 17, respectively.

Fig, 6.
Fig, 6.

Frequency response versus multiplication gain showing a 153GHz gain-bandwidth product. Symbols (diamond, square and triangle) are experimental results of three 30µm-diameter APDs.

Metrics