Abstract

We present an analytical technique based on direct absorption laser spectroscopy for high precision and simultaneous determination of the mixing ratios of the most abundant nitrous oxide isotopic species: 14N15N16O, 15N14N16O and 14N2 16O. A precision of 0.5‰ was achieved for the site specific isotope ratios of N2O at 90 ppm using an averaging time of 300 s.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (Cambridge University Press, Cambridge and New York, 2007).
  2. L. Y. Stein and Y. L. Yung, "Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide," Annu. Rev. Earth Planet Sci. 31, 329-356 (2003).
    [CrossRef]
  3. T. Röckmann, J. Kaiser, C. A. M. Brenninkmeijer, and W. A. Brand, "Gas chromatography / isotope-ratio mass-spectrometry method for high-precision position-dependent 15N and 18O measurement of atmospheric nitrous oxide," Rapid Commun. Mass Spectrom. 17, 1897-1908 (2003).
    [CrossRef] [PubMed]
  4. S. Toyoda and N. Yoshida, "Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer," Anal. Chem. 71, 4711-4718 (1999).
    [CrossRef]
  5. M. B. Westley, B. N. Popp, and T. M. Rust, "The calibration of the intramolecular nitrogen isotope distribution in N2O measured by isotope ratio mass spectrometry," Rapid Commun. Mass Spectrom. 21, 391-405 (2007).
    [CrossRef] [PubMed]
  6. K. Uehara, K. Yamamoto, T. Kikugawa, and N. Yoshida, "Site-selective isotopic ratio measurement of nitrous oxide using 2 ?m diode lasers," Spectrochim. Acta A 59, 957-962 (2003).
    [CrossRef]
  7. G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
    [CrossRef]
  8. H. Waechter and M. W. Sigrist, "Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection," Appl. Phys. B 87, 539-546 (2007).
    [CrossRef]
  9. G. Drewitt and J. S. Warland, "Continuous measurements of belowground nitrous oxide concentrations," Soil Sci. Soc. Am. J. 71, 1-7 (2007).
    [CrossRef]
  10. J. A. Martín, M. Yates, P. ?vila, S. Suárez, and J. Blanco, "N2O formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts," Appl. Catal. B Environ. 70, 330-334 (2007).
    [CrossRef]
  11. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
    [CrossRef]
  12. B. Tuzson, M. J. Zeeman, M. S. Zahniser, and L. Emmenegger, "Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements," Infra. Phys. Technol. 51, 198-206 (2008).
    [CrossRef]
  13. P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
    [CrossRef]
  14. L. S. Rothman, D. Jacquemarta, A. Barbe,  et al. "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiat. Transfer 96, 139-204 (2005).
  15. B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).
  16. R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
    [CrossRef] [PubMed]

2008 (1)

B. Tuzson, M. J. Zeeman, M. S. Zahniser, and L. Emmenegger, "Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements," Infra. Phys. Technol. 51, 198-206 (2008).
[CrossRef]

2007 (4)

M. B. Westley, B. N. Popp, and T. M. Rust, "The calibration of the intramolecular nitrogen isotope distribution in N2O measured by isotope ratio mass spectrometry," Rapid Commun. Mass Spectrom. 21, 391-405 (2007).
[CrossRef] [PubMed]

H. Waechter and M. W. Sigrist, "Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection," Appl. Phys. B 87, 539-546 (2007).
[CrossRef]

G. Drewitt and J. S. Warland, "Continuous measurements of belowground nitrous oxide concentrations," Soil Sci. Soc. Am. J. 71, 1-7 (2007).
[CrossRef]

J. A. Martín, M. Yates, P. ?vila, S. Suárez, and J. Blanco, "N2O formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts," Appl. Catal. B Environ. 70, 330-334 (2007).
[CrossRef]

2006 (1)

R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
[CrossRef] [PubMed]

2005 (2)

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemarta, A. Barbe,  et al. "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiat. Transfer 96, 139-204 (2005).

2003 (3)

K. Uehara, K. Yamamoto, T. Kikugawa, and N. Yoshida, "Site-selective isotopic ratio measurement of nitrous oxide using 2 ?m diode lasers," Spectrochim. Acta A 59, 957-962 (2003).
[CrossRef]

L. Y. Stein and Y. L. Yung, "Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide," Annu. Rev. Earth Planet Sci. 31, 329-356 (2003).
[CrossRef]

T. Röckmann, J. Kaiser, C. A. M. Brenninkmeijer, and W. A. Brand, "Gas chromatography / isotope-ratio mass-spectrometry method for high-precision position-dependent 15N and 18O measurement of atmospheric nitrous oxide," Rapid Commun. Mass Spectrom. 17, 1897-1908 (2003).
[CrossRef] [PubMed]

2002 (1)

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

1999 (1)

S. Toyoda and N. Yoshida, "Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer," Anal. Chem. 71, 4711-4718 (1999).
[CrossRef]

1993 (1)

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

?vila, P.

J. A. Martín, M. Yates, P. ?vila, S. Suárez, and J. Blanco, "N2O formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts," Appl. Catal. B Environ. 70, 330-334 (2007).
[CrossRef]

Baillargeon, J. N.

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemarta, A. Barbe,  et al. "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiat. Transfer 96, 139-204 (2005).

Blanco, J.

J. A. Martín, M. Yates, P. ?vila, S. Suárez, and J. Blanco, "N2O formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts," Appl. Catal. B Environ. 70, 330-334 (2007).
[CrossRef]

Borri, S.

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

Brand, W. A.

T. Röckmann, J. Kaiser, C. A. M. Brenninkmeijer, and W. A. Brand, "Gas chromatography / isotope-ratio mass-spectrometry method for high-precision position-dependent 15N and 18O measurement of atmospheric nitrous oxide," Rapid Commun. Mass Spectrom. 17, 1897-1908 (2003).
[CrossRef] [PubMed]

Brenninkmeijer, C. A. M.

T. Röckmann, J. Kaiser, C. A. M. Brenninkmeijer, and W. A. Brand, "Gas chromatography / isotope-ratio mass-spectrometry method for high-precision position-dependent 15N and 18O measurement of atmospheric nitrous oxide," Rapid Commun. Mass Spectrom. 17, 1897-1908 (2003).
[CrossRef] [PubMed]

Breznak, J. A.

R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
[CrossRef] [PubMed]

Capasso, F.

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

Cho, A. Y.

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

Drewitt, G.

G. Drewitt and J. S. Warland, "Continuous measurements of belowground nitrous oxide concentrations," Soil Sci. Soc. Am. J. 71, 1-7 (2007).
[CrossRef]

Emmenegger, L.

B. Tuzson, M. J. Zeeman, M. S. Zahniser, and L. Emmenegger, "Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements," Infra. Phys. Technol. 51, 198-206 (2008).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

Eugster, W.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

Gagliardi, G.

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

Gandhi, H.

R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
[CrossRef] [PubMed]

Gmachl, C.

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

Hutchinson, A. L.

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

Jacquemarta, D.

L. S. Rothman, D. Jacquemarta, A. Barbe,  et al. "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiat. Transfer 96, 139-204 (2005).

Kaiser, J.

T. Röckmann, J. Kaiser, C. A. M. Brenninkmeijer, and W. A. Brand, "Gas chromatography / isotope-ratio mass-spectrometry method for high-precision position-dependent 15N and 18O measurement of atmospheric nitrous oxide," Rapid Commun. Mass Spectrom. 17, 1897-1908 (2003).
[CrossRef] [PubMed]

Kikugawa, T.

K. Uehara, K. Yamamoto, T. Kikugawa, and N. Yoshida, "Site-selective isotopic ratio measurement of nitrous oxide using 2 ?m diode lasers," Spectrochim. Acta A 59, 957-962 (2003).
[CrossRef]

Li, F.

R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
[CrossRef] [PubMed]

Martín, J. A.

J. A. Martín, M. Yates, P. ?vila, S. Suárez, and J. Blanco, "N2O formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts," Appl. Catal. B Environ. 70, 330-334 (2007).
[CrossRef]

McManus, J. B.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

Mohn, J.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

Mucke, R.

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

Nelson, D. D.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

Ostrom, N. E.

R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
[CrossRef] [PubMed]

Ostrom, P. H.

R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
[CrossRef] [PubMed]

Pitt, A. J.

R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
[CrossRef] [PubMed]

Popp, B. N.

M. B. Westley, B. N. Popp, and T. M. Rust, "The calibration of the intramolecular nitrogen isotope distribution in N2O measured by isotope ratio mass spectrometry," Rapid Commun. Mass Spectrom. 21, 391-405 (2007).
[CrossRef] [PubMed]

Röckmann, T.

T. Röckmann, J. Kaiser, C. A. M. Brenninkmeijer, and W. A. Brand, "Gas chromatography / isotope-ratio mass-spectrometry method for high-precision position-dependent 15N and 18O measurement of atmospheric nitrous oxide," Rapid Commun. Mass Spectrom. 17, 1897-1908 (2003).
[CrossRef] [PubMed]

Rothman, L. S.

L. S. Rothman, D. Jacquemarta, A. Barbe,  et al. "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiat. Transfer 96, 139-204 (2005).

Rust, T. M.

M. B. Westley, B. N. Popp, and T. M. Rust, "The calibration of the intramolecular nitrogen isotope distribution in N2O measured by isotope ratio mass spectrometry," Rapid Commun. Mass Spectrom. 21, 391-405 (2007).
[CrossRef] [PubMed]

Shorter, J. H.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

Sigrist, M. W.

H. Waechter and M. W. Sigrist, "Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection," Appl. Phys. B 87, 539-546 (2007).
[CrossRef]

Sivco, D. L.

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

Slemr, F.

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

Stein, L. Y.

L. Y. Stein and Y. L. Yung, "Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide," Annu. Rev. Earth Planet Sci. 31, 329-356 (2003).
[CrossRef]

Suárez, S.

J. A. Martín, M. Yates, P. ?vila, S. Suárez, and J. Blanco, "N2O formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts," Appl. Catal. B Environ. 70, 330-334 (2007).
[CrossRef]

Sutka, R. L.

R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
[CrossRef] [PubMed]

Tamassia, F.

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

Toyoda, S.

S. Toyoda and N. Yoshida, "Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer," Anal. Chem. 71, 4711-4718 (1999).
[CrossRef]

Tuzson, B.

B. Tuzson, M. J. Zeeman, M. S. Zahniser, and L. Emmenegger, "Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements," Infra. Phys. Technol. 51, 198-206 (2008).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

Uehara, K.

K. Uehara, K. Yamamoto, T. Kikugawa, and N. Yoshida, "Site-selective isotopic ratio measurement of nitrous oxide using 2 ?m diode lasers," Spectrochim. Acta A 59, 957-962 (2003).
[CrossRef]

Waechter, H.

H. Waechter and M. W. Sigrist, "Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection," Appl. Phys. B 87, 539-546 (2007).
[CrossRef]

Warland, J. S.

G. Drewitt and J. S. Warland, "Continuous measurements of belowground nitrous oxide concentrations," Soil Sci. Soc. Am. J. 71, 1-7 (2007).
[CrossRef]

Werle, P.

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

Werner, R. A.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

Westley, M. B.

M. B. Westley, B. N. Popp, and T. M. Rust, "The calibration of the intramolecular nitrogen isotope distribution in N2O measured by isotope ratio mass spectrometry," Rapid Commun. Mass Spectrom. 21, 391-405 (2007).
[CrossRef] [PubMed]

Yamamoto, K.

K. Uehara, K. Yamamoto, T. Kikugawa, and N. Yoshida, "Site-selective isotopic ratio measurement of nitrous oxide using 2 ?m diode lasers," Spectrochim. Acta A 59, 957-962 (2003).
[CrossRef]

Yates, M.

J. A. Martín, M. Yates, P. ?vila, S. Suárez, and J. Blanco, "N2O formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts," Appl. Catal. B Environ. 70, 330-334 (2007).
[CrossRef]

Yoshida, N.

K. Uehara, K. Yamamoto, T. Kikugawa, and N. Yoshida, "Site-selective isotopic ratio measurement of nitrous oxide using 2 ?m diode lasers," Spectrochim. Acta A 59, 957-962 (2003).
[CrossRef]

S. Toyoda and N. Yoshida, "Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer," Anal. Chem. 71, 4711-4718 (1999).
[CrossRef]

Yung, Y. L.

L. Y. Stein and Y. L. Yung, "Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide," Annu. Rev. Earth Planet Sci. 31, 329-356 (2003).
[CrossRef]

Zahniser, M. S.

B. Tuzson, M. J. Zeeman, M. S. Zahniser, and L. Emmenegger, "Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements," Infra. Phys. Technol. 51, 198-206 (2008).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

Zeeman, M. J.

B. Tuzson, M. J. Zeeman, M. S. Zahniser, and L. Emmenegger, "Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements," Infra. Phys. Technol. 51, 198-206 (2008).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

Anal. Chem. (1)

S. Toyoda and N. Yoshida, "Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer," Anal. Chem. 71, 4711-4718 (1999).
[CrossRef]

Annu. Rev. Earth Planet Sci. (1)

L. Y. Stein and Y. L. Yung, "Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide," Annu. Rev. Earth Planet Sci. 31, 329-356 (2003).
[CrossRef]

Appl. Environ. Microbiol. (1)

R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, and F. Li, "Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances," Appl. Environ. Microbiol. 72, 638-644 (2006).
[CrossRef] [PubMed]

Appl. Phys. B (4)

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, "High precision and continuous field measurements of ?13C and ?18O in carbon dioxide with a cryogenic free QCLAS," Appl. Phys. B (to be published).

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

H. Waechter and M. W. Sigrist, "Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection," Appl. Phys. B 87, 539-546 (2007).
[CrossRef]

B Environ. (1)

J. A. Martín, M. Yates, P. ?vila, S. Suárez, and J. Blanco, "N2O formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts," Appl. Catal. B Environ. 70, 330-334 (2007).
[CrossRef]

Infra. Phys. Technol. (1)

B. Tuzson, M. J. Zeeman, M. S. Zahniser, and L. Emmenegger, "Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements," Infra. Phys. Technol. 51, 198-206 (2008).
[CrossRef]

Isotopes Environ. Health Stud. (1)

G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers," Isotopes Environ. Health Stud. 41, 313-321 (2005).
[CrossRef]

J. Quantum Spectrosc. Radiat. Transfer (1)

L. S. Rothman, D. Jacquemarta, A. Barbe,  et al. "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiat. Transfer 96, 139-204 (2005).

Rapid Commun. Mass Spectrom. (2)

T. Röckmann, J. Kaiser, C. A. M. Brenninkmeijer, and W. A. Brand, "Gas chromatography / isotope-ratio mass-spectrometry method for high-precision position-dependent 15N and 18O measurement of atmospheric nitrous oxide," Rapid Commun. Mass Spectrom. 17, 1897-1908 (2003).
[CrossRef] [PubMed]

M. B. Westley, B. N. Popp, and T. M. Rust, "The calibration of the intramolecular nitrogen isotope distribution in N2O measured by isotope ratio mass spectrometry," Rapid Commun. Mass Spectrom. 21, 391-405 (2007).
[CrossRef] [PubMed]

Soil Sci. Soc. Am. J. (1)

G. Drewitt and J. S. Warland, "Continuous measurements of belowground nitrous oxide concentrations," Soil Sci. Soc. Am. J. 71, 1-7 (2007).
[CrossRef]

Spectrochim. Acta A (1)

K. Uehara, K. Yamamoto, T. Kikugawa, and N. Yoshida, "Site-selective isotopic ratio measurement of nitrous oxide using 2 ?m diode lasers," Spectrochim. Acta A 59, 957-962 (2003).
[CrossRef]

Other (1)

IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (Cambridge University Press, Cambridge and New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Schematic of the optical layout (QCL: quantum cascade laser, D: detector). (b) Measured (dots) and fitted spectrum (solid line) of the N2O isotopes (top) and the corresponding line strengths (bottom). The tail of a strong absorption line of 14N14N16O (2188.19 cm-1) is clearly visible and was considered in the fit up to 2188.1 cm-1.

Fig. 2.
Fig. 2.

Allan variance of the normalized isotope ratio 15Nβ/14N (see text) at 9 ppm (a) and 90 ppm (b) of N2O.

Fig. 3.
Fig. 3.

Repeated measurements of a gas cylinder (α50). (a) Time series of the 15Nβ/14N ratio and the drift corrected averaged δ15Nβ values (10 min) during 2.5 days. (b) After drift correction averaged δ15Nβ values (10 min) were plotted as a histogram with a 0.2‰ bin width. The distribution is nearly Gaussian with a standard deviation of 0.7‰ and a shift of 0.3‰ with respect to the expected δ-value.

Fig. 4.
Fig. 4.

(a). The isotopomer specific 15Nβ/14N ratio measured for different N2O concentrations. (b) The linear relationship between δ15Nβ of the calibration gases and the interpolated 15Nβ/14N ratios determined by laser spectroscopy.

Tables (1)

Tables Icon

Table 1. N2O concentrations and δ-values of calibration gases with ±σ (δ reference point: medical N2O)

Metrics