Abstract

We study the rational harmonic mode-locking (RHML) order dependent pulse shortening force and dynamic chirp characteristics of a gain-saturated semiconductor optical amplifier fiber laser (SOAFL) under dark-optical-comb injection, and discuss the competition between mode-locking mechanisms in the SOAFL at high-gain and strong optical injection condition at higher RHML orders. The evolutions of spectra, mode-locking and continuous lasing powers by measuring the ratio of DC/pulse amplitude and the pulse shortening force (Ipulse/Pavg 2) are performed to determine the RHML capability of SOAFL. As the rational harmonic order increases up to 20, the spectral linewidth shrinks from 12 to 3 nm, the ratio of DC/pulse amplitude enlarges from 0.025 to 2.4, and the pulse-shortening force reduces from 0.9 to 0.05. At fundamental and highest RHML condition, we characterize the frequency detuning range to realize the mode-locking quality, and measure the dynamic frequency chirp of the RHML-SOAFL to distinguish the linear and nonlinear chirp after dispersion compensation. With increasing RHML order, the pulsewidth is broadened from 4.2 to 26.4 ps with corresponding chirp reducing from 0.7 to 0.2 GHz and linear/nonlinear chirp ratio changes from 4.3 to 1.3, which interprets the high-order chirp becomes dominates at higher RHML orders.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, "Theoretical and Experimental Study of Pulse-Amplitude-Equalization in a Rational Harmonic Mode-Locked Fiber Ring Laser," IEEE J. Quantum Electron. 37, 33-37 (2001)
    [CrossRef]
  2. H. J. Lee, K. Kim, and H. G. Kim, "Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror," Opt. Commun. 160, 51-56 (1999).
    [CrossRef]
  3. Y. J. Kim, C. G. Lee, Y. Y. Chun, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor fiber ring laser using a dual-drive Mach-Zehnder modulator," Opt. Express 12, 907 (2004).
    [CrossRef] [PubMed]
  4. C. G. Lee, Y. J. Kim, H. K. Choi, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback," Opt. Commun. 209, 417-425 (2002).
    [CrossRef]
  5. S. Yang, J. Cameron, and X. Bao, "Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser," IEEE Photon. Technol. Lett. 19, 393-395 (2007).
    [CrossRef]
  6. J. He and K. T. Chan, "All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA," Electron. Lett. 38, 1504-1505 (2002).
    [CrossRef]
  7. W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
    [CrossRef]
  8. G.-R. Lin, Y.-S. Liao, and G.-Q Xia, "Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers," Opt. Express 12, 2017 (2004).
    [CrossRef] [PubMed]
  9. G. -R. Lin, I.-H. Chiu, and M.-C. Wu, "1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression," Opt. Express 13, 1008 (2005).
    [CrossRef] [PubMed]
  10. G.-R. Lin and I.-H. Chiu, "Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz," Opt. Express 13, 8772 (2005).
    [CrossRef] [PubMed]
  11. W. Rudolph and B. Wilhelmi, Light Pulse Compression (Harwood Academic Publishers, New York, 1989), Chap. 3.

2007 (2)

S. Yang, J. Cameron, and X. Bao, "Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser," IEEE Photon. Technol. Lett. 19, 393-395 (2007).
[CrossRef]

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

2005 (2)

2004 (2)

2002 (2)

C. G. Lee, Y. J. Kim, H. K. Choi, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback," Opt. Commun. 209, 417-425 (2002).
[CrossRef]

J. He and K. T. Chan, "All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA," Electron. Lett. 38, 1504-1505 (2002).
[CrossRef]

2001 (1)

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, "Theoretical and Experimental Study of Pulse-Amplitude-Equalization in a Rational Harmonic Mode-Locked Fiber Ring Laser," IEEE J. Quantum Electron. 37, 33-37 (2001)
[CrossRef]

1999 (1)

H. J. Lee, K. Kim, and H. G. Kim, "Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror," Opt. Commun. 160, 51-56 (1999).
[CrossRef]

Bao, X.

S. Yang, J. Cameron, and X. Bao, "Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser," IEEE Photon. Technol. Lett. 19, 393-395 (2007).
[CrossRef]

Cameron, J.

S. Yang, J. Cameron, and X. Bao, "Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser," IEEE Photon. Technol. Lett. 19, 393-395 (2007).
[CrossRef]

Chan, K. T.

J. He and K. T. Chan, "All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA," Electron. Lett. 38, 1504-1505 (2002).
[CrossRef]

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, "Theoretical and Experimental Study of Pulse-Amplitude-Equalization in a Rational Harmonic Mode-Locked Fiber Ring Laser," IEEE J. Quantum Electron. 37, 33-37 (2001)
[CrossRef]

Chiu, I.-H.

Choi, H. K.

C. G. Lee, Y. J. Kim, H. K. Choi, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback," Opt. Commun. 209, 417-425 (2002).
[CrossRef]

Chun, Y. Y.

Gao, Y.

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, "Theoretical and Experimental Study of Pulse-Amplitude-Equalization in a Rational Harmonic Mode-Locked Fiber Ring Laser," IEEE J. Quantum Electron. 37, 33-37 (2001)
[CrossRef]

He, J.

J. He and K. T. Chan, "All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA," Electron. Lett. 38, 1504-1505 (2002).
[CrossRef]

Kim, H. G.

H. J. Lee, K. Kim, and H. G. Kim, "Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror," Opt. Commun. 160, 51-56 (1999).
[CrossRef]

Kim, K.

H. J. Lee, K. Kim, and H. G. Kim, "Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror," Opt. Commun. 160, 51-56 (1999).
[CrossRef]

Kim, Y. J.

Y. J. Kim, C. G. Lee, Y. Y. Chun, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor fiber ring laser using a dual-drive Mach-Zehnder modulator," Opt. Express 12, 907 (2004).
[CrossRef] [PubMed]

C. G. Lee, Y. J. Kim, H. K. Choi, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback," Opt. Commun. 209, 417-425 (2002).
[CrossRef]

Lee, C. G.

Y. J. Kim, C. G. Lee, Y. Y. Chun, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor fiber ring laser using a dual-drive Mach-Zehnder modulator," Opt. Express 12, 907 (2004).
[CrossRef] [PubMed]

C. G. Lee, Y. J. Kim, H. K. Choi, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback," Opt. Commun. 209, 417-425 (2002).
[CrossRef]

Lee, H. J.

H. J. Lee, K. Kim, and H. G. Kim, "Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror," Opt. Commun. 160, 51-56 (1999).
[CrossRef]

Li, Y.

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, "Theoretical and Experimental Study of Pulse-Amplitude-Equalization in a Rational Harmonic Mode-Locked Fiber Ring Laser," IEEE J. Quantum Electron. 37, 33-37 (2001)
[CrossRef]

Li, Z.

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, "Theoretical and Experimental Study of Pulse-Amplitude-Equalization in a Rational Harmonic Mode-Locked Fiber Ring Laser," IEEE J. Quantum Electron. 37, 33-37 (2001)
[CrossRef]

Liao, Y.-S.

Lin, G. -R.

Lin, G.-R.

Liu, L.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Lou, C.

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, "Theoretical and Experimental Study of Pulse-Amplitude-Equalization in a Rational Harmonic Mode-Locked Fiber Ring Laser," IEEE J. Quantum Electron. 37, 33-37 (2001)
[CrossRef]

Park, C. -S.

Y. J. Kim, C. G. Lee, Y. Y. Chun, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor fiber ring laser using a dual-drive Mach-Zehnder modulator," Opt. Express 12, 907 (2004).
[CrossRef] [PubMed]

C. G. Lee, Y. J. Kim, H. K. Choi, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback," Opt. Commun. 209, 417-425 (2002).
[CrossRef]

Sun, J.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Wang, J.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Wu, M.-C.

Xia, G.-Q

Yang, S.

S. Yang, J. Cameron, and X. Bao, "Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser," IEEE Photon. Technol. Lett. 19, 393-395 (2007).
[CrossRef]

Zhang, W.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Electron. Lett. (1)

J. He and K. T. Chan, "All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA," Electron. Lett. 38, 1504-1505 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, "Theoretical and Experimental Study of Pulse-Amplitude-Equalization in a Rational Harmonic Mode-Locked Fiber Ring Laser," IEEE J. Quantum Electron. 37, 33-37 (2001)
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Yang, J. Cameron, and X. Bao, "Stabilized Phase-Modulated Rational Harmonic Mode-Locking Soliton Fiber Laser," IEEE Photon. Technol. Lett. 19, 393-395 (2007).
[CrossRef]

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Opt. Commun. (2)

C. G. Lee, Y. J. Kim, H. K. Choi, and C. -S. Park, "Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback," Opt. Commun. 209, 417-425 (2002).
[CrossRef]

H. J. Lee, K. Kim, and H. G. Kim, "Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror," Opt. Commun. 160, 51-56 (1999).
[CrossRef]

Opt. Express (4)

Other (1)

W. Rudolph and B. Wilhelmi, Light Pulse Compression (Harwood Academic Publishers, New York, 1989), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup. EAMP; electrical power amplifier; COMB: comb generator; EATTN: electrical attenuator; MZM: Mach-Zehnder modulator; EDFA: Erbium-doped fiber amplifier; OC: optical coupler; ISO: optical isolator; WDM: wavelength-division multiplexing; SOA: semiconductor optical amplifier; PC: polarization controller.

Fig. 2.
Fig. 2.

The DC and pulse amplitude as a function of RHML order.

Fig. 3.
Fig. 3.

The ratio of DC and pulse amplitude with increasing RHML orders.

Fig. 4.
Fig. 4.

The development of SOAFL spectra at different RHML order

Fig. 5.
Fig. 5.

The auto-correlation trace of SOAFL at 1st, 5th, 10th, and 20th RHML orders.

Fig. 6.
Fig. 6.

The variation of 1 GHz mode-locked pulse by detuning RF frequency and the detuning range is from - 30 kHz to 30 kHz.

Fig. 7.
Fig. 7.

The alterations of 20th order RHML from -300 Hz to 300 Hz.

Fig. 8.
Fig. 8.

The tendencies of pulsewidth and frequency chirp peak to peak in HML.

Fig. 9.
Fig. 9.

The 20th order RHML shows the alterations of pulsewidth and frequency chirp peak to peak.

Fig. 10.
Fig. 10.

Variation of the chirp difference as a function of RHML order.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ v = d ϕ dt 2 π = α e 4 π [ Γ g v g R sp ] = α e 4 π [ dP ( t ) P ( t ) dt 1 τ c ]
= α e L 4 π [ dg ( t ) dt 1 τ c ] α e L 4 π { d dt [ g 0 L τ c exp ( t 2 τ 0 2 ) ] 1 τ c } ,

Metrics