Abstract

In this paper, we report a new design and fabrication of an integrated two-layer phase mask for five-beam holographic fabrication of three-dimensional photonic crystal templates. The phase mask consists of two layers of orthogonally oriented gratings produced in a polymer. The vertical spatial separation between two layers produces a phase shift among diffractive laser beams, which enables the holographic fabrication of inter-connected three-dimensional photonic structures. A three-dimensional photonic crystal template was fabricated using the two-layer phase mask and was consistent with simulations based on the five beam interference. The reported method simplifies the fabrication of photonic crystals and is amendable for massive production and chip-scale integration of three-dimensional photonic structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef]
  2. E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature (London) 386, 143-147 (1997).
    [CrossRef]
  4. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
    [CrossRef]
  5. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
    [CrossRef] [PubMed]
  6. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
    [CrossRef] [PubMed]
  7. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997).
    [CrossRef]
  8. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
    [CrossRef] [PubMed]
  9. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
    [CrossRef]
  10. O. Toader, T. Y. M. Chan, and S. John, "Photonic band gap architectures for holographic lithography," Phys. Rev. Lett.  92, 043905/1-4 (2004).
    [CrossRef] [PubMed]
  11. D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-6 (2003).
    [CrossRef]
  12. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, "Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique," Opt. Express 13, 9605-9611 (2005).
    [CrossRef] [PubMed]
  13. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
    [CrossRef] [PubMed]
  14. Y. K. Pang, J. C. Wai Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, "Chiral microstructures (spirals) fabrication by holographic lithography," Opt. Express 13, 7615-7620 (2005).
    [CrossRef] [PubMed]
  15. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys. Lett. 82, 1667-1669 (2003).
    [CrossRef]
  16. S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
    [CrossRef]
  17. Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys.  97, 096102/1-3 (2005).
    [CrossRef]
  18. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett.  86, 071117/1-3 (2005).
    [CrossRef]
  19. D. Chanda, L. Abolghasemi, and P. R. Herman, "One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates," Opt. Express 14, 8568-8577 (2006).
    [CrossRef] [PubMed]
  20. D. Chanda and P. R. Herman, "Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates," Appl. Phys. Lett.  91, 061122/1-3 (2007).
    [CrossRef]
  21. T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73, 046610 (2006).
    [CrossRef]
  22. Y. Lin, D. Rivera, Z. Pole, and K. P. Chen, "Five-beam interference pattern controlled through phases and wavevectors for diamond like photonic crystal," Appl. Opt. 45, 7971-7976 (2006).
    [CrossRef] [PubMed]
  23. Y. K. Pang, J. C. Lee, C. T. Ho, and W. Y. Tam, "Realization of woodpile structure using optical interference holography," Opt. Express 14, 9113-9119 (2006).
    [CrossRef] [PubMed]
  24. H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
    [CrossRef]
  25. N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
    [CrossRef]
  26. Y. Lin and P. R. Herman, "Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry," J. Appl. Phys.  98, 063104/4 (2005).
    [CrossRef]
  27. O. Toader, T. Chan, and S. John, "Photonic band gap synthesis by holographic lithography," Phys. Rev. Lett.  92, 043905/4 (2004).
    [CrossRef] [PubMed]
  28. R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
    [CrossRef]
  29. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals," Adv. Mater. 14, 187-191 (2002).
    [CrossRef]
  30. S. Peng and G. M. Morris, "Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings," J. Opt. Soc. Am. A 12, 1087-1096 (1995).
    [CrossRef]

2006 (5)

2005 (2)

2004 (3)

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

2003 (3)

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys. Lett. 82, 1667-1669 (2003).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
[CrossRef] [PubMed]

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-6 (2003).
[CrossRef]

2002 (3)

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

2000 (2)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef] [PubMed]

1997 (2)

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature (London) 386, 143-147 (1997).
[CrossRef]

1995 (1)

1994 (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

1987 (2)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef]

E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

Abolghasemi, L.

Aizenberg, J.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Berger, V.

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[CrossRef]

Biswas, R.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Braun, P. V.

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

Bunning, T. J.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Busch, K.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef] [PubMed]

Chaikin, P. M.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Chan, C. T.

Y. K. Pang, J. C. Wai Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, "Chiral microstructures (spirals) fabrication by holographic lithography," Opt. Express 13, 7615-7620 (2005).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Chan, T. Y. M.

T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73, 046610 (2006).
[CrossRef]

Chanda, D.

Chen, K. P.

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Cirelli, R.

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[CrossRef]

Crawford, G. P.

Crespi, V. H.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys. Lett. 82, 1667-1669 (2003).
[CrossRef]

Denning, R. G.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-6 (2003).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef] [PubMed]

Deubel, M.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Divliansky, I.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys. Lett. 82, 1667-1669 (2003).
[CrossRef]

Escuti, M. J.

Fan, S. H.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature (London) 386, 143-147 (1997).
[CrossRef]

Freymann, G. V.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[CrossRef]

Geoffrey, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef] [PubMed]

Hatton, B.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[CrossRef]

He, G. S.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

Heitzman, C. E.

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

Herman, P. R.

Hermatschweiler, M.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

Ho, C. T.

Ho, K. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Holliday, K. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys. Lett. 82, 1667-1669 (2003).
[CrossRef]

Hsu, C. C.

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Jakubiak, R.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

Jeon, S.

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

Jessica, P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature (London) 386, 143-147 (1997).
[CrossRef]

John, S.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73, 046610 (2006).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef]

Kenis, P. J. A.

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

Lai, N. D.

Lee, H. F.

Lee, J. C.

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Liang, W. P.

Lin, C. H.

Lin, J. H.

Lin, Y.

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Mayer, T. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys. Lett. 82, 1667-1669 (2003).
[CrossRef]

Megens, M.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Miguez, H.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Morris, G. M.

Natarajan, L. V.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Ozin, G. A.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Pang, Y. K.

Park, J.-U.

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

Peng, S.

Pereira, S.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Perez-Willard, F.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

Perovic, D.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[CrossRef]

Pole, Z.

Prasad, P. N.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

Qi, J.

Rivera, D.

Rogers, J. A.

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

Russel, W. B.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Sharp, D. N.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-6 (2003).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef] [PubMed]

Sheng, P.

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Sutherland, R. L.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Tam, W. Y.

Tereault, N.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

Tetreault, N.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[CrossRef]

Toader, O.

T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73, 046610 (2006).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Tomlin, D.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Tondiglia, V.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

Tondiglia, V. P.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Turberfield, A. J.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-6 (2003).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef] [PubMed]

Vaia, R. A.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature (London) 386, 143-147 (1997).
[CrossRef]

von Freymann, G.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

Wai Lee, J. C.

Wegener, M.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Wiltzius, P.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

Yang, S.

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Yang, S. M.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[CrossRef]

Adv. Mater. (2)

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, "Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals," Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys. Lett. 82, 1667-1669 (2003).
[CrossRef]

Chem. Commun. (Cambridge) (1)

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[CrossRef]

Chem. Mater. (1)

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

J. Appl. Phys. (1)

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Mater. (1)

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Nature (London) (3)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, P. Jessica, G. A. Ozin, A. Geoffrey, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers," Nature (London) 405, 437-440 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature (London) 386, 143-147 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-6 (2003).
[CrossRef]

Phys. Rev. E (1)

T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73, 046610 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef]

E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

PNAS (1)

S.  Jeon, J.-U.  Park, R.  Cirelli, S.  Yang, C. E.  Heitzman, P. V.  Braun, P. J. A.  Kenis, and J. A.  Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS  101, 12429 -12434 (2004).
[CrossRef]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Other (6)

Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys.  97, 096102/1-3 (2005).
[CrossRef]

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett.  86, 071117/1-3 (2005).
[CrossRef]

D. Chanda and P. R. Herman, "Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates," Appl. Phys. Lett.  91, 061122/1-3 (2007).
[CrossRef]

O. Toader, T. Y. M. Chan, and S. John, "Photonic band gap architectures for holographic lithography," Phys. Rev. Lett.  92, 043905/1-4 (2004).
[CrossRef] [PubMed]

Y. Lin and P. R. Herman, "Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry," J. Appl. Phys.  98, 063104/4 (2005).
[CrossRef]

O. Toader, T. Chan, and S. John, "Photonic band gap synthesis by holographic lithography," Phys. Rev. Lett.  92, 043905/4 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of two beam interference for the formation of optical phase mask consisting of two orthogonally oriented gratings in a photoresist.

Fig. 2.
Fig. 2.

Scanning electron microscope of the fabricated phase mask showing two layers of grating structure (a), and the enlarged view (b).

Fig. 3.
Fig. 3.

(a). Scheme of phase mask and diffracted beams by the top grating; (b) Photo of fabricated phase mask and diffracted beams by the phase mask.

Fig. 4.
Fig. 4.

(a). Scheme of setup for single beam exposure; (b) SEM of photonic crystal template fabricated using the phase mask through single beam and single exposure method; (c) An enlarged view of SEM. The inset is the simulation of five-beam interference pattern; (d-e) 3D pattern of the five-beam interference with δ12=0.35 π (d) and δ12=0 π (e); (f) Fabricated structure in SU-8 with δ12=0 π and simulated intensity pattern as an insert; (g) 3D pattern of the five-beam interference with δ12=0.2 π.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 0 , 0 ( r , t ) = E 0 , 0 cos ( ( k 0 , 0 r ω t + δ 1 ) ,
E 1 , 0 ( r , t ) = E 1 , 0 cos ( ( k 1 , 0 r ω t + δ 1 ) ,
E 1 , 0 ( r , t ) = E 1 , 0 cos ( ( k 1 , 0 r ω t + δ 1 ) ,
E 0 , 1 ( r , t ) = E 0 , 1 cos ( ( k 0 , 1 r ω t + δ 2 ) ,
E 0 , 1 ( r , t ) = E 0 , 1 cos ( ( k 0 , 1 r ω t + δ 2 )

Metrics