Abstract

The optical properties of plasmonic dipole and bowtie nanoantennas are investigated in detail using the Green’s tensor technique. The influence of the geometrical parameters (antenna length, gap dimension and bow angle) on the antenna field enhancement and spectral response is discussed. Dipole and bowtie antennas confine the field in a volume well below the diffraction limit, defined by the gap dimensions. The dipole antenna produces a stronger field enhancement than the bowtie antenna for all investigated antenna geometries. This enhancement can reach three orders of magnitude for the smallest examined gap. Whereas the dipole antenna is monomode in the considered spectral range, the bowtie antenna exhibits multiple resonances. Furthermore, the sensitivity of the antennas to index changes of the environment and of the substrate is investigated in detail for biosensing applications; the bowtie antennas show slightly higher sensitivity than the dipole antenna.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, "Optical dichroism of lithographically designed silver nanoparticle films," Opt. Lett. 21, 1099 (1996).
    [CrossRef] [PubMed]
  2. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
    [CrossRef]
  3. J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000).
    [CrossRef] [PubMed]
  4. H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000).
    [CrossRef]
  5. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
    [CrossRef]
  6. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
    [CrossRef]
  7. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef] [PubMed]
  8. C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of Star-Shaped Gold Nanoparticles," Nano Lett. 6, 683-688 (2006).
    [CrossRef] [PubMed]
  9. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6, 2060-2065 (2006).
    [CrossRef] [PubMed]
  10. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
    [CrossRef] [PubMed]
  11. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
    [CrossRef]
  12. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
    [CrossRef] [PubMed]
  13. S. Nie, and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  14. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
    [CrossRef]
  15. H. Xu, E. J. Bjerneld, M. Käll, and L. Brjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
    [CrossRef]
  16. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
    [CrossRef]
  17. W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007).
    [CrossRef] [PubMed]
  18. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
    [CrossRef] [PubMed]
  19. T. H. Taminau, F. D. Stefani, F. B. Segerink and N. F. Van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
    [CrossRef]
  20. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  21. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. vanHulst, "? /4 resonance of an Optical Monopole Antenna probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
    [CrossRef] [PubMed]
  22. P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007).
    [CrossRef] [PubMed]
  23. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
    [CrossRef] [PubMed]
  24. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402-017404 (2005).
    [CrossRef] [PubMed]
  25. G. Lévêque and O. J. F. Martin, "Tunable composite nanoparticle for plasmonics," Opt. Lett. 31, 2750-2752 (2006).
    [CrossRef] [PubMed]
  26. K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO[sub 2]/Au nanodisks," Appl. Phys. Lett. 88, 063113-063118 (2006).
    [CrossRef]
  27. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-093123 (2006).
    [CrossRef]
  28. J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B(Condensed Matter and Materials Physics) 76, 245403-245407 (2007).
    [CrossRef]
  29. Z. Jiasen, and X.W. Jing Yang, and Q. Gong, "Electric field enhancing properties of the V-shaped optical resonant antennas," Opt. Express 15, 16852-16859 (2007).
    [CrossRef]
  30. O. L. Muskens, and J. A. S.-G. V. Giannini, and J. Gómez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2008).
    [CrossRef]
  31. R. M. Bakker, and Z. L. Alexandra Boltasseva, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15, 13682 (2007).
    [CrossRef] [PubMed]
  32. M. L. Brongersma, "Engineering optical nanoantennas," Nat. Photonics 2, 270-273 (2008).
    [CrossRef]
  33. A. Alu, and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nat. Photonics 2, 307-309 (2008).
    [CrossRef]
  34. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
    [CrossRef]
  35. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using High Transmission Nanoscale Bowtie Apertures," Nano Lett. 6, 361-364 (2006).
    [CrossRef] [PubMed]
  36. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006).
    [CrossRef] [PubMed]
  37. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402-017404 (2005).
    [CrossRef] [PubMed]
  38. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
    [CrossRef] [PubMed]
  39. R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
    [CrossRef]
  40. O. J. F. Martin, and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
    [CrossRef]
  41. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, "Accurate and efficient computation of the Green??s tensor for stratified media," Phys. Rev. E 62, 5797-5807 (2000).
    [CrossRef]
  42. M. Paulus, and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green??s tensor approach," J. Opt. Soc. Am. A 18, 854-861 (2001).
    [CrossRef]
  43. P. B. Johnson, and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  44. J. P. Kottmann, and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
    [CrossRef]
  45. P. Gay-Balmaz, and O. J. F. Martin, "Validity domain and limitation of non-retarded Green??s tensor for electromagnetic scattering at surfaces," Opt. Commun. 184, 37-47 (2000).
    [CrossRef]
  46. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402/235401-235410 (2001).
    [CrossRef]
  47. J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express. 8, 655-663 (2001).
    [CrossRef] [PubMed]
  48. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
    [CrossRef]
  49. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, Hoboken, NJ, 2005).
  50. L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802-266804 (2007).
    [CrossRef]

2008 (6)

T. H. Taminau, F. D. Stefani, F. B. Segerink and N. F. Van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

M. L. Brongersma, "Engineering optical nanoantennas," Nat. Photonics 2, 270-273 (2008).
[CrossRef]

A. Alu, and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nat. Photonics 2, 307-309 (2008).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

O. L. Muskens, and J. A. S.-G. V. Giannini, and J. Gómez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2008).
[CrossRef]

2007 (10)

L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802-266804 (2007).
[CrossRef]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

R. M. Bakker, and Z. L. Alexandra Boltasseva, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15, 13682 (2007).
[CrossRef] [PubMed]

P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007).
[CrossRef] [PubMed]

Z. Jiasen, and X.W. Jing Yang, and Q. Gong, "Electric field enhancing properties of the V-shaped optical resonant antennas," Opt. Express 15, 16852-16859 (2007).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B(Condensed Matter and Materials Physics) 76, 245403-245407 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. vanHulst, "? /4 resonance of an Optical Monopole Antenna probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007).
[CrossRef] [PubMed]

2006 (9)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of Star-Shaped Gold Nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6, 2060-2065 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO[sub 2]/Au nanodisks," Appl. Phys. Lett. 88, 063113-063118 (2006).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-093123 (2006).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using High Transmission Nanoscale Bowtie Apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

G. Lévêque and O. J. F. Martin, "Tunable composite nanoparticle for plasmonics," Opt. Lett. 31, 2750-2752 (2006).
[CrossRef] [PubMed]

2005 (3)

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402-017404 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402-017404 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

2003 (4)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

2002 (1)

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

2001 (2)

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express. 8, 655-663 (2001).
[CrossRef] [PubMed]

M. Paulus, and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green??s tensor approach," J. Opt. Soc. Am. A 18, 854-861 (2001).
[CrossRef]

2000 (5)

J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000).
[CrossRef] [PubMed]

H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000).
[CrossRef]

J. P. Kottmann, and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
[CrossRef]

P. Gay-Balmaz, and O. J. F. Martin, "Validity domain and limitation of non-retarded Green??s tensor for electromagnetic scattering at surfaces," Opt. Commun. 184, 37-47 (2000).
[CrossRef]

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, "Accurate and efficient computation of the Green??s tensor for stratified media," Phys. Rev. E 62, 5797-5807 (2000).
[CrossRef]

1999 (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Brjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

1998 (2)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef]

O. J. F. Martin, and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
[CrossRef]

1997 (2)

S. Nie, and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

1996 (1)

1972 (1)

P. B. Johnson, and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Agio, M.

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Alexandra Boltasseva, Z. L.

Alu, A.

A. Alu, and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nat. Photonics 2, 307-309 (2008).
[CrossRef]

Aubard, J.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Aussenegg, F. R.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, "Optical dichroism of lithographically designed silver nanoparticle films," Opt. Lett. 21, 1099 (1996).
[CrossRef] [PubMed]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef]

Bakker, R. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

R. M. Bakker, and Z. L. Alexandra Boltasseva, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15, 13682 (2007).
[CrossRef] [PubMed]

Bharadwaj, P.

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Brjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

Boltasseva, A.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Brjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Brjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma, "Engineering optical nanoantennas," Nat. Photonics 2, 270-273 (2008).
[CrossRef]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-093123 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson, and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-093123 (2006).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-093123 (2006).
[CrossRef]

Cui, X.

W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000).
[CrossRef]

Drachev, V.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Drachev, V. P.

Eisler, H. J.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402-017404 (2005).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie, and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Engheta, N.

A. Alu, and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nat. Photonics 2, 307-309 (2008).
[CrossRef]

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B(Condensed Matter and Materials Physics) 76, 245403-245407 (2007).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402-017404 (2005).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Felidj, N.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402-017404 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Garcia de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Gay-Balmaz, P.

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, "Accurate and efficient computation of the Green??s tensor for stratified media," Phys. Rev. E 62, 5797-5807 (2000).
[CrossRef]

P. Gay-Balmaz, and O. J. F. Martin, "Validity domain and limitation of non-retarded Green??s tensor for electromagnetic scattering at surfaces," Opt. Commun. 184, 37-47 (2000).
[CrossRef]

Giannini, J. A. S.-G. V.

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Gómez Rivas, J.

O. L. Muskens, and J. A. S.-G. V. Giannini, and J. Gómez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2008).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Gong, Q.

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Gotschy, W.

Gresillon, S.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

R. M. Bakker, and Z. L. Alexandra Boltasseva, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15, 13682 (2007).
[CrossRef] [PubMed]

Hafner, C.

W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007).
[CrossRef] [PubMed]

Hafner, J. H.

C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of Star-Shaped Gold Nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef]

Halm, A

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402-017404 (2005).
[CrossRef] [PubMed]

Hohenau, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Jiasen, Z.

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using High Transmission Nanoscale Bowtie Apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6, 2060-2065 (2006).
[CrossRef] [PubMed]

Jing Yang, X.W.

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson, and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Brjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

Kaminski, F.

Kildishev, A. V.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

R. M. Bakker, and Z. L. Alexandra Boltasseva, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15, 13682 (2007).
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402-017404 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-093123 (2006).
[CrossRef]

Kottmann, J.

Kottmann, J. P.

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express. 8, 655-663 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
[CrossRef]

Krenn, J. R.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. vanHulst, "? /4 resonance of an Optical Monopole Antenna probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000).
[CrossRef]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, "Optical dichroism of lithographically designed silver nanoparticle films," Opt. Lett. 21, 1099 (1996).
[CrossRef] [PubMed]

Lévêque, G.

Levi, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Li, J.

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B(Condensed Matter and Materials Physics) 76, 245403-245407 (2007).
[CrossRef]

Liao, H.

C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of Star-Shaped Gold Nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

Liu, Z.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Martin, O.

Martin, O. J. F.

G. Lévêque and O. J. F. Martin, "Tunable composite nanoparticle for plasmonics," Opt. Lett. 31, 2750-2752 (2006).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express. 8, 655-663 (2001).
[CrossRef] [PubMed]

M. Paulus, and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green??s tensor approach," J. Opt. Soc. Am. A 18, 854-861 (2001).
[CrossRef]

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, "Accurate and efficient computation of the Green??s tensor for stratified media," Phys. Rev. E 62, 5797-5807 (2000).
[CrossRef]

P. Gay-Balmaz, and O. J. F. Martin, "Validity domain and limitation of non-retarded Green??s tensor for electromagnetic scattering at surfaces," Opt. Commun. 184, 37-47 (2000).
[CrossRef]

J. P. Kottmann, and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
[CrossRef]

O. J. F. Martin, and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
[CrossRef]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6, 2060-2065 (2006).
[CrossRef] [PubMed]

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. vanHulst, "? /4 resonance of an Optical Monopole Antenna probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402-017404 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, and J. A. S.-G. V. Giannini, and J. Gómez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2008).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Nehl, C. L.

C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of Star-Shaped Gold Nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

Nie, S.

S. Nie, and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802-266804 (2007).
[CrossRef]

P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007).
[CrossRef] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef]

Paulus, M.

M. Paulus, and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green??s tensor approach," J. Opt. Soc. Am. A 18, 854-861 (2001).
[CrossRef]

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, "Accurate and efficient computation of the Green??s tensor for stratified media," Phys. Rev. E 62, 5797-5807 (2000).
[CrossRef]

Pedersen, R. H.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

R. M. Bakker, and Z. L. Alexandra Boltasseva, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15, 13682 (2007).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Piller, N. B.

O. J. F. Martin, and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402-017404 (2005).
[CrossRef] [PubMed]

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B(Condensed Matter and Materials Physics) 76, 245403-245407 (2007).
[CrossRef]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Sandoghdar, V.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6, 2060-2065 (2006).
[CrossRef] [PubMed]

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

Schmid, T.

W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402-017404 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Schultz, S.

Segerink, F. B.

T. H. Taminau, F. D. Stefani, F. B. Segerink and N. F. Van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. vanHulst, "? /4 resonance of an Optical Monopole Antenna probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Shalaev, V. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

R. M. Bakker, and Z. L. Alexandra Boltasseva, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15, 13682 (2007).
[CrossRef] [PubMed]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6, 2060-2065 (2006).
[CrossRef] [PubMed]

Smith, D.

Stefani, F. D.

T. H. Taminau, F. D. Stefani, F. B. Segerink and N. F. Van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Su, K. H.

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO[sub 2]/Au nanodisks," Appl. Phys. Lett. 88, 063113-063118 (2006).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402-017404 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Taminau, T. H.

T. H. Taminau, F. D. Stefani, F. B. Segerink and N. F. Van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. vanHulst, "? /4 resonance of an Optical Monopole Antenna probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using High Transmission Nanoscale Bowtie Apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

Van Hulst, N. F.

T. H. Taminau, F. D. Stefani, F. B. Segerink and N. F. Van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

VanDuyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6, 2060-2065 (2006).
[CrossRef] [PubMed]

vanHulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. vanHulst, "? /4 resonance of an Optical Monopole Antenna probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Vonmetz, K.

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using High Transmission Nanoscale Bowtie Apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Wei, Q. H.

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO[sub 2]/Au nanodisks," Appl. Phys. Lett. 88, 063113-063118 (2006).
[CrossRef]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Brjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

Xu, X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using High Transmission Nanoscale Bowtie Apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

Yeo, B.-S.

W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007).
[CrossRef] [PubMed]

Yuan, H.-K.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Zenobi, R.

W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007).
[CrossRef] [PubMed]

Zhang, X.

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO[sub 2]/Au nanodisks," Appl. Phys. Lett. 88, 063113-063118 (2006).
[CrossRef]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003).
[CrossRef]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, "Enhanced localized fluorescence in plasmonic nanoantennae," Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO[sub 2]/Au nanodisks," Appl. Phys. Lett. 88, 063113-063118 (2006).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-093123 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J. P. Kottmann, and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (10)

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using High Transmission Nanoscale Bowtie Apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

W. Zhang, X. Cui, B.-S. Yeo, T. Schmid, C. Hafner, and R. Zenobi, "Nanoscale roughness on metal surfaces can increase Tip-Enhanced Raman Scattering by an order of magnitude," Nano Lett. 7, 1401-1405 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. vanHulst, "? /4 resonance of an Optical Monopole Antenna probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

C. L. Nehl, H. Liao, and J. H. Hafner, "Optical properties of Star-Shaped Gold Nanoparticles," Nano Lett. 6, 683-688 (2006).
[CrossRef] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. VanDuyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6, 2060-2065 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Nat. Photonics (4)

M. L. Brongersma, "Engineering optical nanoantennas," Nat. Photonics 2, 270-273 (2008).
[CrossRef]

A. Alu, and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nat. Photonics 2, 307-309 (2008).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

T. H. Taminau, F. D. Stefani, F. B. Segerink and N. F. Van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Opt. Commun. (2)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

P. Gay-Balmaz, and O. J. F. Martin, "Validity domain and limitation of non-retarded Green??s tensor for electromagnetic scattering at surfaces," Opt. Commun. 184, 37-47 (2000).
[CrossRef]

Opt. Express (5)

Opt. Express. (1)

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express. 8, 655-663 (2001).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. B (3)

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B(Condensed Matter and Materials Physics) 76, 245403-245407 (2007).
[CrossRef]

P. B. Johnson, and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Phys. Rev. E (2)

O. J. F. Martin, and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
[CrossRef]

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, "Accurate and efficient computation of the Green??s tensor for stratified media," Phys. Rev. E 62, 5797-5807 (2000).
[CrossRef]

Phys. Rev. Lett. (7)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving theMismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402-017404 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402-017404 (2005).
[CrossRef] [PubMed]

L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802-266804 (2007).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garc?a de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Brjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
[CrossRef] [PubMed]

S. Nie, and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Other (2)

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, Hoboken, NJ, 2005).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402/235401-235410 (2001).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (436 KB)     
» Media 2: MOV (1516 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Geometry of the investigated system: (a) Bowtie and (b) dipole antennas. The illumination is shown in panel (b).

Fig. 2.
Fig. 2.

Relative field intensity spectra in the gap for (a) bowtie and (b) dipole antennas. The dotted line in panel (b) indicates the relative field intensity at the extremity of the dipole antenna. (l=230nm; g=30nm)

Fig. 3.
Fig. 3.

Near-field intensity distribution 20nm above a dipole antenna (l=230nm) as a function of the illumination wavelength λ. The corresponding spectrum (field intensity in the gap) is shown in the inset. (file size: 0.4MB) [Media 1]

Fig. 4.
Fig. 4.

Near-field intensity distributions 20nm above bowtie antennas (l=230nm) as a function of the illumination wavelength λ. Four different bow angles are considered (from top left to bottom right): α 1=28°, α 1=53°, α 1=90° and α 4=127°. The corresponding spectra (field intensity in the gap) are shown in the insets. (file size: 1.5MB) [Media 2]

Fig. 5.
Fig. 5.

(a) xz-map and (b) yz-map of the relative field intensity in a plane through the middle of a dipole antenna at the resonance wavelength.

Fig. 6.
Fig. 6.

Relative intensity enhancement in the gap as a function of the antenna length l between l=110nm and l=270nm in 20nm increments. (a) Dipole and (b) bowtie geometry (α=90°). The antenna gap is kept constant (g=30nm).

Fig. 7.
Fig. 7.

(a) Resonance position shift for dipole (+) and bowtie (α=90°, *) antennas as a function of the antenna length. (b) Field enhancement as a function of the antenna length for both antennas.

Fig. 8.
Fig. 8.

(a) The three main resonances of a bowtie antenna (l=210nm; α=90°) and (b) their spectral position as a function of the antenna length.

Fig. 9.
Fig. 9.

Relative intensity spectra in the gap as a function of the illumination wavelength and gap width for (a) a dipole and (b) a bowtie (α=90°) antenna (l=230nm). (c) Spectral position and (d) relative field enhancement in the gap of the corresponding intensity maximum as a function of the gap width. For the bowtie antenna the three main resonances are again treated separately (see Fig. 8). The dot in panel (c) indicates the spectral position of the maximum for the corresponding monopole antenna.

Fig. 10.
Fig. 10.

Relative field intensity enhancement in the gap for (a) a dipole and (b) a bowtie antenna (l=110nm, g=30nm, α=90°) as a function of the illumination wavelength. Different refractive indexes ns are used for the substrate material.

Fig. 11.
Fig. 11.

Relative field intensity enhancement in the gap for (a) a dipole and (b) a bowtie antenna (l=110nm, g=30nm, α=90°) as a function of the illumination wavelength. Different refractive indexes nenv are used for the cover material, the substrate index is ns =1,5.

Fig. 12.
Fig. 12.

Sensitivity of the (a) dipole and (b) bowtie antenna (l=110nm, g=30nm, α=90°) as a function of the environment index nenv .

Metrics