Abstract

The symmetry of a Fabry-Perot-like planar cavity embedded within a three-dimensional (3D) woodpile photonic crystal prevents the observation of polarization effects. In this letter we propose a geometry to break the degeneracy of the Fabry-Perot-like cavity modes by introducing asymmetry. The introduction of a one-dimensional (1D) lattice to the centre of a planar cavity allows for distinct modes parallel (TE) and perpendicular (TM) to the layer. This hybrid 3D-1D-3D lattice structure exhibits a pronounced increase in the quality-factor, and in particular shows an increase of up to 50% more than that of a planar cavity for TM modes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 066601 (2003).
    [CrossRef]
  4. A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
    [CrossRef]
  5. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol. 17, 1682-1692 (1999).
    [CrossRef]
  6. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. ??zbay, and C. M. Soukoulis, "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B. 64, 1951131-1951137 (2001).
    [CrossRef]
  7. M. J. Ventura, M. Straub, and M. Gu, "Planar cavity modes in void channel polymer photonic crystals," Opt. Express 13, 2767-2773 (2005).
    [CrossRef] [PubMed]
  8. M. Straub, M. Ventura, and M. Gu, "Multiple higher-order stop gaps in infrared polymer photonic crystals," Phys. Rev. Lett. 91, 043901 (2003).
    [CrossRef] [PubMed]
  9. M. J. Ventura, M. Straub, and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
    [CrossRef]
  10. Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997).
    [CrossRef]
  11. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
    [CrossRef]
  12. G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
    [CrossRef]

2005 (1)

2004 (1)

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

2003 (4)

M. Straub, M. Ventura, and M. Gu, "Multiple higher-order stop gaps in infrared polymer photonic crystals," Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef] [PubMed]

M. J. Ventura, M. Straub, and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

2001 (1)

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. ??zbay, and C. M. Soukoulis, "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B. 64, 1951131-1951137 (2001).
[CrossRef]

1999 (2)

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol. 17, 1682-1692 (1999).
[CrossRef]

A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
[CrossRef]

1997 (1)

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997).
[CrossRef]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

??zbay, E.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. ??zbay, and C. M. Soukoulis, "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B. 64, 1951131-1951137 (2001).
[CrossRef]

Astratov, V. N.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997).
[CrossRef]

Bayindir, M.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. ??zbay, and C. M. Soukoulis, "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B. 64, 1951131-1951137 (2001).
[CrossRef]

Blanco, A.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Bogomolov, V. N.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997).
[CrossRef]

Bulu, I.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. ??zbay, and C. M. Soukoulis, "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B. 64, 1951131-1951137 (2001).
[CrossRef]

Busch, K.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Chutinan, A.

A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
[CrossRef]

Cubukcu, E.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. ??zbay, and C. M. Soukoulis, "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B. 64, 1951131-1951137 (2001).
[CrossRef]

de Dood, M.

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Deubel, M.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Enkrich, C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Enoch, S.

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Fan, S.

Gralak, B.

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Gu, M.

M. J. Ventura, M. Straub, and M. Gu, "Planar cavity modes in void channel polymer photonic crystals," Opt. Express 13, 2767-2773 (2005).
[CrossRef] [PubMed]

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

M. Straub, M. Ventura, and M. Gu, "Multiple higher-order stop gaps in infrared polymer photonic crystals," Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef] [PubMed]

M. J. Ventura, M. Straub, and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

Haus, H. A.

Joannopoulos, J. D.

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Kaplyanskii, A. A.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997).
[CrossRef]

Karimov, O. Z.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997).
[CrossRef]

Kawata, S.

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

Kivshar, Y.

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

Koch, W.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Manolatou, C.

Maystre, D.

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Meisel, D. C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Miklyaev, Y. V.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Noda, S.

A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
[CrossRef]

Ono, A.

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

Prokofiev, A. V.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997).
[CrossRef]

Soukoulis, C. M.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. ??zbay, and C. M. Soukoulis, "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B. 64, 1951131-1951137 (2001).
[CrossRef]

Straub, M.

M. J. Ventura, M. Straub, and M. Gu, "Planar cavity modes in void channel polymer photonic crystals," Opt. Express 13, 2767-2773 (2005).
[CrossRef] [PubMed]

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

M. Straub, M. Ventura, and M. Gu, "Multiple higher-order stop gaps in infrared polymer photonic crystals," Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef] [PubMed]

M. J. Ventura, M. Straub, and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

Tayeb, G.

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Tut, T.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. ??zbay, and C. M. Soukoulis, "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B. 64, 1951131-1951137 (2001).
[CrossRef]

Ventura, M.

M. Straub, M. Ventura, and M. Gu, "Multiple higher-order stop gaps in infrared polymer photonic crystals," Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef] [PubMed]

Ventura, M. J.

M. J. Ventura, M. Straub, and M. Gu, "Planar cavity modes in void channel polymer photonic crystals," Opt. Express 13, 2767-2773 (2005).
[CrossRef] [PubMed]

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

M. J. Ventura, M. Straub, and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

Villeneuve, P. R.

Vlasov, Y. A.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997).
[CrossRef]

von Freymanna, G.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Wang, X. H.

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

Wegener, M.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

Zhou, G.

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
[CrossRef]

M. J. Ventura, M. Straub, and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymanna, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: Fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

G. Zhou, M. J. Ventura, M. Straub, M. Gu, A. Ono, S. Kawata, X. H. Wang, and Y. Kivshar, "In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal," Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Phys. Rev. B (1)

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997).
[CrossRef]

Phys. Rev. B. (1)

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. ??zbay, and C. M. Soukoulis, "Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals," Phys. Rev. B. 64, 1951131-1951137 (2001).
[CrossRef]

Phys. Rev. E (1)

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

M. Straub, M. Ventura, and M. Gu, "Multiple higher-order stop gaps in infrared polymer photonic crystals," Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Band diagram calculations for woodpile lattices in the stacking direction (Γ-X’). (a) A simple woodpile lattice exhibits a stop-gap in the stacking direction between the forth and fifth band centered at normalized frequency 0.305. (b) A simple planar cavity introduced at the centre of a woodpile lattice reveals a single flat band within the stop-gap at normalized frequency 0.306. (c) The introduction of a 1D periodic lattice to the centre of the cavity in. (d) TE modes are defined perpendicular to the 1D lattice periodicity and TM modes are defined parallel to the 1D lattice periodicity.

Fig. 2.
Fig. 2.

The energy density of TE and TM modes calculated for a vertical plane. Overlaid in black is a trace that outline of the lattice positions. (a) The TE and (b) TM modes of a hybrid 3D-1D-3D lattice. The scale bar indicates the energy density form low density (black) to high density (white).

Fig. 3.
Fig. 3.

TE (black) and TM (grey) infrared transmission spectra of the PC lattices measured in the stacking direction. (a) A woodpile lattice with a transmission dip centered at wavelength 4.65 µm denoting the main stop-gap for both TE and TM polarization. (b) A woodpile lattice with a planar defect of size Δd=2.2µm showing a peak within the stop gap centered at wavelength 4.7 µm from both TE and TM modes. (c) A planar cavity with a 1D lattice of period a=1.4 µm showing two distinct TE and TM polarized modes with a peak wavelength separation of 3.3 nm. (d) A schematic of the combined Parabola and Lorentzian fitting.

Fig. 4.
Fig. 4.

The quality factor of the TE (black diamonds) and TM (grey circles) defect modes as a function of the 1D cavity periodicity. The dashed lines are a guide for the eye.

Metrics