Abstract

The absorption and fluorescence sensing properties of liquid-immersed exposed-core microstructured optical fibers are explored for the regime where these structures act as supported nanowires with direct access to the sensing environment. For absorption-based sensing we demonstrate that the amount of power propagating in the sensing region of the exposed-core fiber can compete with that of traditional MOFs. For fluorescence-based sensing, we see that in addition to the enhanced fluorescence capture efficiency already predicted for small-core, high refractive index contrast fibers, an improvement of up to 29% can be gained by using liquid-immersed exposed-core fibers. Additionally, calculation of the losses associated with interfaces between filled and unfilled sections predict significant benefit in using high refractive index substrate glasses for liquid-immersed exposed-core fiber sensing. This work demonstrates that, for fiber dimensions of interest, the exposed-core fiber is an attractive new sensor technology.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Stewart and B. Culshaw, "Optical waveguide modelling and design for evanescent field chemical sensors," Opt. Quantum Electron. 26, s249-s259 (1994).
    [CrossRef]
  2. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
    [CrossRef] [PubMed]
  3. L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
    [CrossRef] [PubMed]
  4. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
    [CrossRef] [PubMed]
  5. Y. Zhu, H. Du, and R. Bise, "Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing," Opt. Express 14, 3541-3546 (2006).
    [CrossRef] [PubMed]
  6. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-7 (2004).
    [CrossRef] [PubMed]
  7. Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
    [CrossRef] [PubMed]
  8. C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreiia, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006).
    [CrossRef] [PubMed]
  9. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
    [CrossRef]
  10. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, "Photonic band-gap fiber gas cell fabricated using femtosecond micromachining," Opt. Express 15, 6690-6695 (2007).
    [CrossRef] [PubMed]
  11. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, "Micro-channels machined in microstructured optical fibers by femtosecond laser," Opt. Express 15, 8731-8736 (2007).
    [CrossRef] [PubMed]
  12. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, "Opening up optical fibres," Opt. Express 15, 11843-11848 (2007).
    [CrossRef] [PubMed]
  13. T. M. Monro, H. Ebendorff-Heidepriem, Patent Application, ???Fabrication of nanowires??? (PCT/AU2006/00501), October 2005.
  14. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004).
    [CrossRef] [PubMed]
  15. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490 (2001).
    [CrossRef]
  16. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
    [CrossRef]
  17. N. Ganesh and B. T. Cunningham, "Photonic crystal enhanced fluorescence," in Tech. Digest, (Opt. Soc. Am., 2007) p. CThz5.
  18. J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
    [CrossRef] [PubMed]
  19. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibres," Opt. Express 15, 17891-17901 (2007).
    [CrossRef]
  20. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007).
    [CrossRef] [PubMed]
  21. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1995).
  22. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  23. F. W. D. Rost, Fluorescence Microscopy (Cambridge University Press, 1992).
  24. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004).
    [CrossRef] [PubMed]
  25. J. D. Love and C. Durniak, "Bend loss, tapering, and cladding-mode coupling in single-mode fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
    [CrossRef]
  26. N. H. P. Kao, N. Yang, and J. S. Schoeniger, "Enhancement of evanescent fluorescence from fiber-optic sensors by thin-film sol-gel coatings," J. Opt. Soc. Am. A 15, 2163-2171 (1998).
    [CrossRef]
  27. W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, s261-s272 (1994).
    [CrossRef]
  28. A. Cargama, "Modal analysis of coupling problems in optical fibers," IEEE Trans. Microwave Theory Tech. MTT-23, 162-169 (1975).
    [CrossRef]
  29. C. Vassallo, "On a rigorous calculation of the efficiency for coupling light power into optical waveguides," QE-13, 165-173 (1977).
  30. M. Mostafavi, I. Itoh, and R. Mittra, "Excitation of an optical fiber by a Gaussian beam," Appl. Opt. 14, 2190-2193 (1975).
    [CrossRef] [PubMed]
  31. J. A. Buck, Fundamentals of Optical Fibers (John Wiley & Sons, 2004).
  32. C. Vassallo, Optical waveguide concepts (Elsevier 1991).
  33. D. Marcuse, "Radiation losses of tapered dielectric slab waveguides," Bell Syst. Tech. J. 49, 273-290 (1970).
  34. P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, and M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72-74, 1017-1019 (1997).
    [CrossRef]

2007

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

J. D. Love and C. Durniak, "Bend loss, tapering, and cladding-mode coupling in single-mode fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
[CrossRef]

C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, "Photonic band-gap fiber gas cell fabricated using femtosecond micromachining," Opt. Express 15, 6690-6695 (2007).
[CrossRef] [PubMed]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, "Micro-channels machined in microstructured optical fibers by femtosecond laser," Opt. Express 15, 8731-8736 (2007).
[CrossRef] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, "Opening up optical fibres," Opt. Express 15, 11843-11848 (2007).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007).
[CrossRef] [PubMed]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibres," Opt. Express 15, 17891-17901 (2007).
[CrossRef]

2006

2005

2004

2003

2001

1998

1997

P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, and M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72-74, 1017-1019 (1997).
[CrossRef]

1994

G. Stewart and B. Culshaw, "Optical waveguide modelling and design for evanescent field chemical sensors," Opt. Quantum Electron. 26, s249-s259 (1994).
[CrossRef]

W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, s261-s272 (1994).
[CrossRef]

1975

A. Cargama, "Modal analysis of coupling problems in optical fibers," IEEE Trans. Microwave Theory Tech. MTT-23, 162-169 (1975).
[CrossRef]

M. Mostafavi, I. Itoh, and R. Mittra, "Excitation of an optical fiber by a Gaussian beam," Appl. Opt. 14, 2190-2193 (1975).
[CrossRef] [PubMed]

1970

D. Marcuse, "Radiation losses of tapered dielectric slab waveguides," Bell Syst. Tech. J. 49, 273-290 (1970).

Asimakis, S.

Bang, O.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

Barretto, E. C. S.

Benabid, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

Bise, R.

Bjarklev, A.

Botten, L. C.

Bozolan, A.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

Brito Cruz, C. H.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreiia, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006).
[CrossRef] [PubMed]

Broaddus, D. H.

Campbell, M.

P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, and M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72-74, 1017-1019 (1997).
[CrossRef]

Cargama, A.

A. Cargama, "Modal analysis of coupling problems in optical fibers," IEEE Trans. Microwave Theory Tech. MTT-23, 162-169 (1975).
[CrossRef]

Chesini, G.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

Cordeiro, C. M. B.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, "Opening up optical fibres," Opt. Express 15, 11843-11848 (2007).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreiia, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006).
[CrossRef] [PubMed]

Couny, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

Cox, F. M.

Cruz, C. H. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

Culshaw, B.

G. Stewart and B. Culshaw, "Optical waveguide modelling and design for evanescent field chemical sensors," Opt. Quantum Electron. 26, s249-s259 (1994).
[CrossRef]

de Matos, C. J.

de Matos, C. J. S.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

de Sterke, C. M.

dos Santos, E. M.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreiia, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006).
[CrossRef] [PubMed]

Du, H.

Dulashko, Y.

Durniak, C.

J. D. Love and C. Durniak, "Bend loss, tapering, and cladding-mode coupling in single-mode fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
[CrossRef]

Ebendorff-Heidepriem, H.

Emiliyanov, G.

Facincani, T.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

Ferreiia, D. S.

Finazzi, V.

Fragnito, H. L.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

Frampton, K.

Franco, M. A. R.

Gaeta, A. L.

Geschke, O.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Grivas, C.

Hale, A.

Hansen, T. P.

Henry, W.

W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, s261-s272 (1994).
[CrossRef]

Hensley, C. J.

Ho, H. L.

Hoffmann, P.

Hoiby, P. E.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

Holmes-Smith, A. S.

P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, and M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72-74, 1017-1019 (1997).
[CrossRef]

Hoo, Y. L.

Itoh, I.

Jensen, J. B.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

Jin, W.

Kao, N. H. P.

Knight, J. C.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

Koizumi, F.

Large, M. C. J.

Lou, J.

Love, J. D.

J. D. Love and C. Durniak, "Bend loss, tapering, and cladding-mode coupling in single-mode fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
[CrossRef]

Ludvigsen, H.

Lwin, R.

Maier, S. A.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

Marcuse, D.

D. Marcuse, "Radiation losses of tapered dielectric slab waveguides," Bell Syst. Tech. J. 49, 273-290 (1970).

McPhedran, R. C.

Mittra, R.

Monro, T. M.

Moore, R. C.

Mostafavi, M.

Ong, J. S. K.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

Pedersen, L. H.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

Petersen, J. C.

Petropoulos, P.

Petrovich, M. N.

Richardson, D. J.

Rindorf, L.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Ritari, T.

Ruan, S. C.

Ruan, Y.

Schaffer, C. B.

Schartner, E. P.

Schoeniger, J. S.

Shi, C. Z.

Simonsen, H. R.

Sorensen, T.

Steel, M. J.

Stewart, G.

G. Stewart and B. Culshaw, "Optical waveguide modelling and design for evanescent field chemical sensors," Opt. Quantum Electron. 26, s249-s259 (1994).
[CrossRef]

Sumetsky, M.

Tong, L.

Tuominen, J.

Uttamlal, M.

P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, and M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72-74, 1017-1019 (1997).
[CrossRef]

van Brakel, A.

Vaz, A. R.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

Wallace, P. A.

P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, and M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72-74, 1017-1019 (1997).
[CrossRef]

Wang, D. N.

White, T. P.

Wiederhecker, G. S.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

Yang, N.

Yang, Y.

P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, and M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72-74, 1017-1019 (1997).
[CrossRef]

Ye, Z.

Zhu, Y.

Anal. Bioanal. Chem.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Bell Syst. Tech. J.

D. Marcuse, "Radiation losses of tapered dielectric slab waveguides," Bell Syst. Tech. J. 49, 273-290 (1970).

IEEE Photon. Technol. Lett.

J. D. Love and C. Durniak, "Bend loss, tapering, and cladding-mode coupling in single-mode fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

A. Cargama, "Modal analysis of coupling problems in optical fibers," IEEE Trans. Microwave Theory Tech. MTT-23, 162-169 (1975).
[CrossRef]

J. Lumin.

P. A. Wallace, M. Campbell, Y. Yang, A. S. Holmes-Smith, and M. Uttamlal, "A distributed optical fibre fluorosensor for pH measurement," J. Lumin. 72-74, 1017-1019 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
[CrossRef]

Nat. Photonics

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fiber with a subwavelength air core," Nat. Photonics 1, 115-118 (2007).
[CrossRef]

Opt. Express

M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004).
[CrossRef] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-7 (2004).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004).
[CrossRef] [PubMed]

J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

Y. Zhu, H. Du, and R. Bise, "Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing," Opt. Express 14, 3541-3546 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreiia, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, "Photonic band-gap fiber gas cell fabricated using femtosecond micromachining," Opt. Express 15, 6690-6695 (2007).
[CrossRef] [PubMed]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, "Micro-channels machined in microstructured optical fibers by femtosecond laser," Opt. Express 15, 8731-8736 (2007).
[CrossRef] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, "Opening up optical fibres," Opt. Express 15, 11843-11848 (2007).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007).
[CrossRef] [PubMed]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibres," Opt. Express 15, 17891-17901 (2007).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

G. Stewart and B. Culshaw, "Optical waveguide modelling and design for evanescent field chemical sensors," Opt. Quantum Electron. 26, s249-s259 (1994).
[CrossRef]

W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, s261-s272 (1994).
[CrossRef]

Other

C. Vassallo, "On a rigorous calculation of the efficiency for coupling light power into optical waveguides," QE-13, 165-173 (1977).

J. A. Buck, Fundamentals of Optical Fibers (John Wiley & Sons, 2004).

C. Vassallo, Optical waveguide concepts (Elsevier 1991).

N. Ganesh and B. T. Cunningham, "Photonic crystal enhanced fluorescence," in Tech. Digest, (Opt. Soc. Am., 2007) p. CThz5.

T. M. Monro, H. Ebendorff-Heidepriem, Patent Application, ???Fabrication of nanowires??? (PCT/AU2006/00501), October 2005.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1995).

Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

F. W. D. Rost, Fluorescence Microscopy (Cambridge University Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scanning electron microscope (SEM) image of an F2 (lead-silicate), wagon wheel fiber (a) and its core region (b). This fiber forms the basis of the exposed-core fiber where one of the holes is opened up to allow it to be accessible to the external environment, as shown in the schematic diagram (c).

Fig. 2.
Fig. 2.

Fundamental field distributions of a water-immersed exposed-core WW fiber where the substrate glass is silica with a core diameter of 0.505µm (a, b) and bismuth with a core diameter of 0.17µm (c, d). The first (a, c) and second (b, d) fundamental modes are shown for each glass type. The effective index of each mode is shown, which relates to the propagation constant (β) and the wavenumber (k) via neff=β/k.

Fig. 3.
Fig. 3.

(a). Difference in effective index between the two degenerate fundamental modes of a fully filled WW structured MOF (dashed lines) and the two fundamental non-degenerate modes of the exposed-core WW (solid lines) for three substrate glasses (indicated in legend). (b). The corresponding beat lengths.

Fig. 4.
Fig. 4.

Effective modal area (a) and modal power fraction (b) as a function of core diameter for three substrate glasses (indicated in legend) where the fiber is either fully filled with water (dashed) or is an exposed-core fiber with one hole containing water (solid). The thick solid lines refer to the fundamental mode of the exposed-core fiber that is polarized parallel to the axis of symmetry and the thin line is for the fundamental mode polarized in the orthogonal direction.

Fig. 5.
Fig. 5.

FCF as a function of core diameter for three substrate glasses (indicated in legend), where the fiber is either fully filled with water (dashed) or is an exposed-core fiber with one hole containing water (solid). In (a) the thick solid lines refer to the fundamental mode of the exposed-core case that is polarized parallel to the axis of symmetry and the thin line is for the fundamental mode with orthogonal polarization. In (b) the result for each fundamental mode has been added to produce the net effect where the thick line refers to the exposed-core fiber and the dashed line is for the fully filled fiber.

Fig. 6.
Fig. 6.

Normalized overlap integral (NOI) as a function of core diameter for three substrate glasses (indicated in legend), where the fiber is either fully filled with water (dashed) or is an exposed-core fiber with one hole containing water (solid). The thick solid lines refer to the fundamental mode of the exposed-core case that is polarized parallel to the axis of symmetry and the thin line is for the fundamental mode with orthogonal polarization.

Fig. 7.
Fig. 7.

Schematic of an exposed-core fiber with a section immersed in a liquid. Liquid interface losses exist for the excitation light entering the liquid filled section and for the fluorescence exiting the liquid filled section.

Fig. 8.
Fig. 8.

Liquid interface transmission for a single coupling in and out event corresponding to one fluid-filled region (a) and FCF multiplied by this transmission (b), as a function of core diameter for three substrate glasses (indicated in legend). The fiber is either fully filled with water (dashed) or is an exposed-core fiber with one hole containing water (solid). In (a) the thick solid lines refer to the first fundamental mode of the exposed-core case and the thin line is for the second fundamental mode. In (b) the thick lines refer to FCF without considering liquid interface losses whereas the thin lines include the appropriate liquid interface losses where each non-degenerate mode of the exposed-core fiber has been considered separately.

Fig. 9.
Fig. 9.

Liquid interface losses for nine coupling in and out events (m=n=9) as a function of core diameter for three substrate glasses (indicated in legend) (a) and the effect on the fluorescence signal received from the far-end of the fiber (b). The liquid interface losses are associated with five fluid-filled regions, where the fiber is either fully filled with water (dashed) or is an exposed-core fiber with one hole containing water (solid). In (a) the thick solid lines refer to the first fundamental mode of the exposed-core case and the thin line is for the second fundamental mode. In (b) the thick lines refer to FCF without considering the effect of liquid interface losses whereas the thin lines do.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A e f f , j = A s z , j ( r ) d A 2 A s z , j ( r ) 2 d A ;
P F j = H s z , j ( r ) d A A s z , j ( r ) d A
FCF j = v [ NOI jv A eff , F v ] ξ λ F 2 16 π ( n F H ) 2
N O I j v = n F H ( ε 0 μ 0 ) 1 2 [ A s F v ( r ) d A H s E j ( r ) d A ] [ H e F v 2 s E j ( r ) d A A s F v ( r ) 2 d A ]
E t 1 ̂ + a E t 1 ̂ + b E t 2 ̂ = a E ̂ t 1 + b E ̂ t 2 + E r a d
H t 1 ̂ - a H t 1 ̂ - b H t 2 ̂ = a H ̂ t 1 + b H ̂ t 2 + H r a d
F C F j , f i n a l = v ( L I T E j ) n × ( L I T F v ) m × F C F j v

Metrics