Abstract

Tm3+-Yb3+ codoped transparent oxyfluoride glass ceramics containing LaF3 nanocrystals were obtained by thermal treatment on the asmade glasses. The formation of LaF3 nanocrystals and the incorporation of Tm3+ and Yb3+ into LaF3 nanocrystal lattice were confirmed by X-ray diffraction and high resolution transmission electron microscopy. Infrared quantum cutting involving Yb3+ 950–1100 nm (2F5/22F7/2) emission was achieved upon the excitation of the 1G4 energy level of Tm3+ at 468 nm. We measured the photoluminescence properties of these glass ceramics. We also investigated the thermal treatment duration dependent quantum efficiency, and found that the quantum efficiency is 13% increased for the 0.5Tm3+-4Yb3+ doped glass ceramic with a maximum value of 144%, and 16% increased for the 0.5Tm3+-8Yb3+ doped glass ceramic with a maximum value of 162%, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, "Visible quantum cutting in LiGdF4: Eu3+ through downconversion," Science 283, 663-666 (1999).
    [CrossRef] [PubMed]
  2. C. Ronda, "Luminescent materials with quantum efficiency larger than 1, status and prospects," J. Lumin. 100, 301-305 (2002).
    [CrossRef]
  3. S. Kubota and M. Shimada, "Sr3Al10SiO20: Eu2+ as a blue luminescent material for plasma displays," Appl. Phys. Lett. 81, 2749-2751 (2002).
    [CrossRef]
  4. D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, "Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications," Nat. Photonics 2, 105-109 (2008).
    [CrossRef]
  5. B. S. Richards, "Luminescent layers for enhanced silicon solar cell performance: Down-conversion," Sol. Energy Mater. Cells 90, 1189-1207 (2006).
    [CrossRef]
  6. C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
    [CrossRef]
  7. T. Trupke, M. A. Green, and P. Wurfel, "Improving solar cell efficiencies by down-conversion of high-energy photons," J. Appl. Phys. 92, 1668-1674 (2002).
    [CrossRef]
  8. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, "Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+," Phys. Rev. B 71, 014119 1-11 (2005).
    [CrossRef]
  9. Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, "Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+, Yb3+ nanophosphors," Appl. Phys. Lett. 90, 061914 (2007).
    [CrossRef]
  10. S. Ye, B. Zhu, J. X. Chen, J. Luo and J. R. Qiu, "Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals," Appl. Phys. Lett. 92, 141112 (2008)
    [CrossRef]
  11. X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, "Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals," J. Appl. Phys.  99, 74302 1-8 (2006).
    [CrossRef]
  12. D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, "Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: ?-YF3 nanocrystals embedded glass ceramic," Appl. Phys. Lett.  91, 51920 1-3 (2007).
  13. Z. Burshtein, Y. Kalisky, S. Z. Levy, P. L. Goulanger, and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses," IEEE J. Quantum Electron. 36, 1000-1007, (2000).
    [CrossRef]
  14. D. L. Dexter, and J. H. Schulman, "Theory of concentration quenching in inorganic phosphor," J. Chem. Phys. 22, 1063-1070 (1954).
    [CrossRef]

2008 (2)

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, "Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications," Nat. Photonics 2, 105-109 (2008).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo and J. R. Qiu, "Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals," Appl. Phys. Lett. 92, 141112 (2008)
[CrossRef]

2007 (3)

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, "Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: ?-YF3 nanocrystals embedded glass ceramic," Appl. Phys. Lett.  91, 51920 1-3 (2007).

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, "Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+, Yb3+ nanophosphors," Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

2006 (2)

B. S. Richards, "Luminescent layers for enhanced silicon solar cell performance: Down-conversion," Sol. Energy Mater. Cells 90, 1189-1207 (2006).
[CrossRef]

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, "Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals," J. Appl. Phys.  99, 74302 1-8 (2006).
[CrossRef]

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, "Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+," Phys. Rev. B 71, 014119 1-11 (2005).
[CrossRef]

2002 (3)

T. Trupke, M. A. Green, and P. Wurfel, "Improving solar cell efficiencies by down-conversion of high-energy photons," J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

C. Ronda, "Luminescent materials with quantum efficiency larger than 1, status and prospects," J. Lumin. 100, 301-305 (2002).
[CrossRef]

S. Kubota and M. Shimada, "Sr3Al10SiO20: Eu2+ as a blue luminescent material for plasma displays," Appl. Phys. Lett. 81, 2749-2751 (2002).
[CrossRef]

2000 (1)

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. L. Goulanger, and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses," IEEE J. Quantum Electron. 36, 1000-1007, (2000).
[CrossRef]

1999 (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, "Visible quantum cutting in LiGdF4: Eu3+ through downconversion," Science 283, 663-666 (1999).
[CrossRef] [PubMed]

1954 (1)

D. L. Dexter, and J. H. Schulman, "Theory of concentration quenching in inorganic phosphor," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Arkhipov, V.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

Beaucarne, G.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

Burshtein, Z.

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. L. Goulanger, and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses," IEEE J. Quantum Electron. 36, 1000-1007, (2000).
[CrossRef]

Canizo, C. D.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

Chen, D. Q.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, "Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: ?-YF3 nanocrystals embedded glass ceramic," Appl. Phys. Lett.  91, 51920 1-3 (2007).

Chen, J. X.

S. Ye, B. Zhu, J. X. Chen, J. Luo and J. R. Qiu, "Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals," Appl. Phys. Lett. 92, 141112 (2008)
[CrossRef]

Den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, "Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+," Phys. Rev. B 71, 014119 1-11 (2005).
[CrossRef]

Dexter, D. L.

D. L. Dexter, and J. H. Schulman, "Theory of concentration quenching in inorganic phosphor," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Donker, H.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, "Visible quantum cutting in LiGdF4: Eu3+ through downconversion," Science 283, 663-666 (1999).
[CrossRef] [PubMed]

Fan, X. P.

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, "Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals," J. Appl. Phys.  99, 74302 1-8 (2006).
[CrossRef]

Goulanger, P. L.

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. L. Goulanger, and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses," IEEE J. Quantum Electron. 36, 1000-1007, (2000).
[CrossRef]

Green, M. A.

T. Trupke, M. A. Green, and P. Wurfel, "Improving solar cell efficiencies by down-conversion of high-energy photons," J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

Gregorkiewicz, T.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, "Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications," Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Huang, P.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, "Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: ?-YF3 nanocrystals embedded glass ceramic," Appl. Phys. Lett.  91, 51920 1-3 (2007).

Izeddin, I.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, "Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications," Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Ji, X. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, "Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+, Yb3+ nanophosphors," Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

Jiang, Z. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, "Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+, Yb3+ nanophosphors," Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

Kalisky, Y.

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. L. Goulanger, and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses," IEEE J. Quantum Electron. 36, 1000-1007, (2000).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, "Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+," Phys. Rev. B 71, 014119 1-11 (2005).
[CrossRef]

Kubota, S.

S. Kubota and M. Shimada, "Sr3Al10SiO20: Eu2+ as a blue luminescent material for plasma displays," Appl. Phys. Lett. 81, 2749-2751 (2002).
[CrossRef]

Levy, S. Z.

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. L. Goulanger, and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses," IEEE J. Quantum Electron. 36, 1000-1007, (2000).
[CrossRef]

Luo, J.

S. Ye, B. Zhu, J. X. Chen, J. Luo and J. R. Qiu, "Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals," Appl. Phys. Lett. 92, 141112 (2008)
[CrossRef]

Mccann, M.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

Meijerink, A.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, "Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+," Phys. Rev. B 71, 014119 1-11 (2005).
[CrossRef]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, "Visible quantum cutting in LiGdF4: Eu3+ through downconversion," Science 283, 663-666 (1999).
[CrossRef] [PubMed]

Oskam, K. D.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, "Visible quantum cutting in LiGdF4: Eu3+ through downconversion," Science 283, 663-666 (1999).
[CrossRef] [PubMed]

Qiao, X. S.

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, "Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals," J. Appl. Phys.  99, 74302 1-8 (2006).
[CrossRef]

Qiu, J. R.

S. Ye, B. Zhu, J. X. Chen, J. Luo and J. R. Qiu, "Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals," Appl. Phys. Lett. 92, 141112 (2008)
[CrossRef]

Richards, B. S.

B. S. Richards, "Luminescent layers for enhanced silicon solar cell performance: Down-conversion," Sol. Energy Mater. Cells 90, 1189-1207 (2006).
[CrossRef]

Ronda, C.

C. Ronda, "Luminescent materials with quantum efficiency larger than 1, status and prospects," J. Lumin. 100, 301-305 (2002).
[CrossRef]

Rotman, S.

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. L. Goulanger, and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses," IEEE J. Quantum Electron. 36, 1000-1007, (2000).
[CrossRef]

Schulman, J. H.

D. L. Dexter, and J. H. Schulman, "Theory of concentration quenching in inorganic phosphor," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Shimada, M.

S. Kubota and M. Shimada, "Sr3Al10SiO20: Eu2+ as a blue luminescent material for plasma displays," Appl. Phys. Lett. 81, 2749-2751 (2002).
[CrossRef]

Slaoui, A.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

Stallinga, P.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, "Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications," Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Strumpel, C.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

Svrcek, V.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

Timmerman, D.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, "Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications," Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Tobias, I.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Wurfel, "Improving solar cell efficiencies by down-conversion of high-energy photons," J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

Van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, "Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+," Phys. Rev. B 71, 014119 1-11 (2005).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, "Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+," Phys. Rev. B 71, 014119 1-11 (2005).
[CrossRef]

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, "Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+," Phys. Rev. B 71, 014119 1-11 (2005).
[CrossRef]

Wang, J.

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, "Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals," J. Appl. Phys.  99, 74302 1-8 (2006).
[CrossRef]

Wang, M. Q.

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, "Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals," J. Appl. Phys.  99, 74302 1-8 (2006).
[CrossRef]

Wang, Y. S.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, "Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: ?-YF3 nanocrystals embedded glass ceramic," Appl. Phys. Lett.  91, 51920 1-3 (2007).

Wegh, R. T.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, "Visible quantum cutting in LiGdF4: Eu3+ through downconversion," Science 283, 663-666 (1999).
[CrossRef] [PubMed]

Wurfel, P.

T. Trupke, M. A. Green, and P. Wurfel, "Improving solar cell efficiencies by down-conversion of high-energy photons," J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

Yang, C. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, "Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+, Yb3+ nanophosphors," Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

Yassievich, I. N.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, "Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications," Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Ye, S.

S. Ye, B. Zhu, J. X. Chen, J. Luo and J. R. Qiu, "Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals," Appl. Phys. Lett. 92, 141112 (2008)
[CrossRef]

Yu, Y. L.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, "Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: ?-YF3 nanocrystals embedded glass ceramic," Appl. Phys. Lett.  91, 51920 1-3 (2007).

Zhang, Q. Y.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, "Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+, Yb3+ nanophosphors," Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

Zhu, B.

S. Ye, B. Zhu, J. X. Chen, J. Luo and J. R. Qiu, "Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals," Appl. Phys. Lett. 92, 141112 (2008)
[CrossRef]

Appl. Phys. Lett (1)

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, "Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: ?-YF3 nanocrystals embedded glass ceramic," Appl. Phys. Lett.  91, 51920 1-3 (2007).

Appl. Phys. Lett. (3)

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, "Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+, Yb3+ nanophosphors," Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo and J. R. Qiu, "Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals," Appl. Phys. Lett. 92, 141112 (2008)
[CrossRef]

S. Kubota and M. Shimada, "Sr3Al10SiO20: Eu2+ as a blue luminescent material for plasma displays," Appl. Phys. Lett. 81, 2749-2751 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

Z. Burshtein, Y. Kalisky, S. Z. Levy, P. L. Goulanger, and S. Rotman, "Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses," IEEE J. Quantum Electron. 36, 1000-1007, (2000).
[CrossRef]

J. Appl. Phys (1)

X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, "Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals," J. Appl. Phys.  99, 74302 1-8 (2006).
[CrossRef]

J. Appl. Phys. (1)

T. Trupke, M. A. Green, and P. Wurfel, "Improving solar cell efficiencies by down-conversion of high-energy photons," J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, and J. H. Schulman, "Theory of concentration quenching in inorganic phosphor," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

J. Lumin. (1)

C. Ronda, "Luminescent materials with quantum efficiency larger than 1, status and prospects," J. Lumin. 100, 301-305 (2002).
[CrossRef]

Nat. Photonics (1)

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, "Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications," Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Phys. Rev. B (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, "Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+," Phys. Rev. B 71, 014119 1-11 (2005).
[CrossRef]

Science (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, "Visible quantum cutting in LiGdF4: Eu3+ through downconversion," Science 283, 663-666 (1999).
[CrossRef] [PubMed]

Sol. Energy Mater. Cells (2)

B. S. Richards, "Luminescent layers for enhanced silicon solar cell performance: Down-conversion," Sol. Energy Mater. Cells 90, 1189-1207 (2006).
[CrossRef]

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. D. Canizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency- An overview of available materials," Sol. Energy Mater. Cells 91, 238-249 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

XRD patterns of the 0.5Tm3+-8Tb3+ doped as-made glass and glass ceramics obtained by 4, 8, 24 and 40 h thermal treatment at 720°C, respectively. The left hand inset describes the main diffraction peak position of LaF3 nanocrystal, and the right hand inset describes the thermal treatment duration dependent lattice parameters.

Fig. 2
Fig. 2

(a). optical images of the as-made glass with 0.5Tm3+-8Yb3+ doping and the corresponding glass ceramics obtained by 4, 8, 24 and 40h thermal treatment, (b) and (c): HRTEM images of the 24h thermal treated glass ceramic.

Fig. 3.
Fig. 3.

Left side: Excitation spectra of Tm3+ 651 nm emission monitored in 0.5Tm3+ single doped glass ceramic (blue line) and of Yb3+ 1016 nm emission monitored in 0.5Tm3+-8Yb3+ codoped glass ceramic (green line). Right side: Emission spectra of 0.5Tm3+ single doped (black line) and 0.5Tm3+-8Yb3+ codoped (red line) glass ceramics under the excitation of 468 nm.

Fig. 4
Fig. 4

Schematic energy level diagram of Tm3+ and Yb3+ with transitions that may be involved in the cooperative energy transfer.

Fig. 5.
Fig. 5.

Thermal treatment duration dependent quantum efficiency.

Tables (1)

Tables Icon

Table 1. The integrated intensity of Tm3+ decay curves

Metrics