Abstract

The substrates in emitting structure were found to have an influence on the surface plasmon mediated light emission of ZnO films. Ag film mediated photoluminescence was quenched for ZnO on silicon substrate but enhanced for ZnO on quartz or sapphire substrate. Through a theoretical simulation, the quenching for ZnO on silicon substrate is ascribed to the power lost to the substrate mode nonradiatively at the expense of the power coupled to the SP mode. The substrate with a high refractive index may capture and dissipate the emitting power which limits the efficiency of SP mediated light extraction. Therefore, a proper arrangement of the refractive index of the substrate and emitting layers in the device structure is decisive for the SP coupled light emission enhancement. Base on the theoretical analysis, a four-layered structure was advanced to recover SP mediated emission enhancement from ZnO film on silicon substrate.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Surface plasmon-polariton mediated light emission through thin metal films

Stephen Wedge and W. L. Barnes
Opt. Express 12(16) 3673-3685 (2004)

Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals

Koichi Okamoto, Saurabh Vyawahare, and Axel Scherer
J. Opt. Soc. Am. B 23(8) 1674-1678 (2006)

Photoluminescence enhancement in nanoimprinted photonic crystals and coupled surface plasmons

V. Reboud, N. Kehagias, M. Zelsmann, C. Schuster, M. Fink, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres
Opt. Express 15(12) 7190-7195 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J.Chem. Phys. 60, 2744–2748 (1974).
    [Crossref]
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
    [Crossref] [PubMed]
  3. C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105-1-3 (2006).
    [Crossref]
  4. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92, 041119-1-3 (2008).
    [Crossref]
  5. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhance radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5, 1768–1773 (2005).
    [Crossref] [PubMed]
  6. D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91, 021112-1-3 (2007).
    [Crossref]
  7. T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express. 13, 5522–5528 (2005).
    [Crossref] [PubMed]
  8. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express. 12, 3673–3685 (2004).
    [Crossref] [PubMed]
  9. W. L. Barnes and P. T. Worthing, “Spontaneous emission and metal-clad microcavities,” Opt. Commun. 162, 16–20 (1999).
    [Crossref]
  10. C.-Y. Chen, D.-M. Yeh, Y.-C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89, 203113-1-3 (2006).
    [Crossref]
  11. R. R. Chance, A. Prock, and R. Silbey, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
    [Crossref]
  12. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media,” J. Opt. Soc. Am. B 14, 1149–1159 (1997).
    [Crossref]
  13. S. Kawabata, K. Ishihara, Y. Hoshi, and T. Fukazawa, “Observation of silver film growth using an in situ ultra-high vacuum spectroscopic ellipsometer,” Thin Solid Film 313–314, 516–521 (1998).
    [Crossref]
  14. Edward D. Palik, Handbook of optical constant of solid (Academic, 1985)
  15. B. J. Soller and D. G. Hall, “Energy transfer at optical frequencies to silicon-based waveguiding structures,” J. Opt. Soc. Am. A 18, 2577–2584 (2001).
    [Crossref]
  16. T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a Au thin film,” Phys. Rev. B 72, 235412-1-6 (2005)
    [Crossref]
  17. R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
    [Crossref]
  18. J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at SiO2/Ag interface by silicon quantum dots:experiment and theory,” Phys. Rev. B 73, 075317-1-8 (2006).
    [Crossref]

2008 (1)

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92, 041119-1-3 (2008).
[Crossref]

2007 (1)

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91, 021112-1-3 (2007).
[Crossref]

2006 (3)

C.-Y. Chen, D.-M. Yeh, Y.-C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89, 203113-1-3 (2006).
[Crossref]

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105-1-3 (2006).
[Crossref]

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at SiO2/Ag interface by silicon quantum dots:experiment and theory,” Phys. Rev. B 73, 075317-1-8 (2006).
[Crossref]

2005 (3)

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a Au thin film,” Phys. Rev. B 72, 235412-1-6 (2005)
[Crossref]

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express. 13, 5522–5528 (2005).
[Crossref] [PubMed]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhance radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5, 1768–1773 (2005).
[Crossref] [PubMed]

2004 (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express. 12, 3673–3685 (2004).
[Crossref] [PubMed]

2001 (1)

1999 (1)

W. L. Barnes and P. T. Worthing, “Spontaneous emission and metal-clad microcavities,” Opt. Commun. 162, 16–20 (1999).
[Crossref]

1998 (1)

S. Kawabata, K. Ishihara, Y. Hoshi, and T. Fukazawa, “Observation of silver film growth using an in situ ultra-high vacuum spectroscopic ellipsometer,” Thin Solid Film 313–314, 516–521 (1998).
[Crossref]

1997 (2)

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
[Crossref]

K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media,” J. Opt. Soc. Am. B 14, 1149–1159 (1997).
[Crossref]

1975 (1)

R. R. Chance, A. Prock, and R. Silbey, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[Crossref]

1974 (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J.Chem. Phys. 60, 2744–2748 (1974).
[Crossref]

Amos, R. M.

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
[Crossref]

Atwater, H. A.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhance radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5, 1768–1773 (2005).
[Crossref] [PubMed]

Barnes, W. L.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105-1-3 (2006).
[Crossref]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express. 12, 3673–3685 (2004).
[Crossref] [PubMed]

W. L. Barnes and P. T. Worthing, “Spontaneous emission and metal-clad microcavities,” Opt. Commun. 162, 16–20 (1999).
[Crossref]

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
[Crossref]

Biteen, J. S.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhance radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5, 1768–1773 (2005).
[Crossref] [PubMed]

Burn, P. L.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105-1-3 (2006).
[Crossref]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[Crossref]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J.Chem. Phys. 60, 2744–2748 (1974).
[Crossref]

Chen, C.-Y.

C.-Y. Chen, D.-M. Yeh, Y.-C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89, 203113-1-3 (2006).
[Crossref]

Chen, P.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92, 041119-1-3 (2008).
[Crossref]

Cheng, P.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92, 041119-1-3 (2008).
[Crossref]

Fujii, M.

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a Au thin film,” Phys. Rev. B 72, 235412-1-6 (2005)
[Crossref]

Fukazawa, T.

S. Kawabata, K. Ishihara, Y. Hoshi, and T. Fukazawa, “Observation of silver film growth using an in situ ultra-high vacuum spectroscopic ellipsometer,” Thin Solid Film 313–314, 516–521 (1998).
[Crossref]

Gersen, H.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at SiO2/Ag interface by silicon quantum dots:experiment and theory,” Phys. Rev. B 73, 075317-1-8 (2006).
[Crossref]

Hall, D. G.

Hayashi, S.

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a Au thin film,” Phys. Rev. B 72, 235412-1-6 (2005)
[Crossref]

Hoshi, Y.

S. Kawabata, K. Ishihara, Y. Hoshi, and T. Fukazawa, “Observation of silver film growth using an in situ ultra-high vacuum spectroscopic ellipsometer,” Thin Solid Film 313–314, 516–521 (1998).
[Crossref]

Imakita, K.

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a Au thin film,” Phys. Rev. B 72, 235412-1-6 (2005)
[Crossref]

Ishihara, K.

S. Kawabata, K. Ishihara, Y. Hoshi, and T. Fukazawa, “Observation of silver film growth using an in situ ultra-high vacuum spectroscopic ellipsometer,” Thin Solid Film 313–314, 516–521 (1998).
[Crossref]

Kalkman, J.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at SiO2/Ag interface by silicon quantum dots:experiment and theory,” Phys. Rev. B 73, 075317-1-8 (2006).
[Crossref]

Kawabata, S.

S. Kawabata, K. Ishihara, Y. Hoshi, and T. Fukazawa, “Observation of silver film growth using an in situ ultra-high vacuum spectroscopic ellipsometer,” Thin Solid Film 313–314, 516–521 (1998).
[Crossref]

Kuipers, L.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at SiO2/Ag interface by silicon quantum dots:experiment and theory,” Phys. Rev. B 73, 075317-1-8 (2006).
[Crossref]

Lei, D. Y.

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91, 021112-1-3 (2007).
[Crossref]

Lewis, N. S.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhance radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5, 1768–1773 (2005).
[Crossref] [PubMed]

Li, D.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92, 041119-1-3 (2008).
[Crossref]

Li, J.

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91, 021112-1-3 (2007).
[Crossref]

Lu, Y.-C.

C.-Y. Chen, D.-M. Yeh, Y.-C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89, 203113-1-3 (2006).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Nakamura, T.

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a Au thin film,” Phys. Rev. B 72, 235412-1-6 (2005)
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Neal, T. D.

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express. 13, 5522–5528 (2005).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Okamoto, K.

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express. 13, 5522–5528 (2005).
[Crossref] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Ong, H. C.

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91, 021112-1-3 (2007).
[Crossref]

Pacifici, D.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhance radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5, 1768–1773 (2005).
[Crossref] [PubMed]

Palik, Edward D.

Edward D. Palik, Handbook of optical constant of solid (Academic, 1985)

Polman, A.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at SiO2/Ag interface by silicon quantum dots:experiment and theory,” Phys. Rev. B 73, 075317-1-8 (2006).
[Crossref]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[Crossref]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J.Chem. Phys. 60, 2744–2748 (1974).
[Crossref]

Samuel, I. D. W.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105-1-3 (2006).
[Crossref]

Scherer, A.

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express. 13, 5522–5528 (2005).
[Crossref] [PubMed]

Scherer, Axel

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[Crossref]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J.Chem. Phys. 60, 2744–2748 (1974).
[Crossref]

Soller, B. J.

Sullivan, K. G.

Wedge, S.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105-1-3 (2006).
[Crossref]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express. 12, 3673–3685 (2004).
[Crossref] [PubMed]

Worthing, P. T.

W. L. Barnes and P. T. Worthing, “Spontaneous emission and metal-clad microcavities,” Opt. Commun. 162, 16–20 (1999).
[Crossref]

Yang, C. C.

C.-Y. Chen, D.-M. Yeh, Y.-C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89, 203113-1-3 (2006).
[Crossref]

Yang, D.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92, 041119-1-3 (2008).
[Crossref]

Yates, C. J.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105-1-3 (2006).
[Crossref]

Yeh, D.-M.

C.-Y. Chen, D.-M. Yeh, Y.-C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89, 203113-1-3 (2006).
[Crossref]

Yuan, Z.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92, 041119-1-3 (2008).
[Crossref]

Appl. Phys. Lett. (4)

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88, 161105-1-3 (2006).
[Crossref]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92, 041119-1-3 (2008).
[Crossref]

C.-Y. Chen, D.-M. Yeh, Y.-C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89, 203113-1-3 (2006).
[Crossref]

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91, 021112-1-3 (2007).
[Crossref]

J. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J.Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J.Chem. Phys. 60, 2744–2748 (1974).
[Crossref]

Nano Lett. (1)

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhance radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5, 1768–1773 (2005).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and Axel Scherer,“Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

W. L. Barnes and P. T. Worthing, “Spontaneous emission and metal-clad microcavities,” Opt. Commun. 162, 16–20 (1999).
[Crossref]

Opt. Express. (2)

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express. 13, 5522–5528 (2005).
[Crossref] [PubMed]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express. 12, 3673–3685 (2004).
[Crossref] [PubMed]

Phys. Rev. B (3)

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a Au thin film,” Phys. Rev. B 72, 235412-1-6 (2005)
[Crossref]

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
[Crossref]

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at SiO2/Ag interface by silicon quantum dots:experiment and theory,” Phys. Rev. B 73, 075317-1-8 (2006).
[Crossref]

Thin Solid Film (1)

S. Kawabata, K. Ishihara, Y. Hoshi, and T. Fukazawa, “Observation of silver film growth using an in situ ultra-high vacuum spectroscopic ellipsometer,” Thin Solid Film 313–314, 516–521 (1998).
[Crossref]

Other (1)

Edward D. Palik, Handbook of optical constant of solid (Academic, 1985)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematics of the Si/ZnO/Ag sample structure; (b) Cross-section SEM image of the sample quartz/ZnO/Ag; (c) Schematics of the structure of the four-layer sample Si/SiO2/ZnO/Ag.

Fig. 2.
Fig. 2.

Photoluminescence of (a) quartz/ZnO/Ag, (b)sapphire/ZnO/Ag, and (c) Si/ZnO/Ag; solid line: before Ag sputtering, broken line: after Ag sputtering.

Fig. 3.
Fig. 3.

(a) Calculated power spectra versus the normalized transverse wavenumber of the quartz/ZnO/Ag, sapphire/ZnO/Ag and Si/ZnO/Ag; (b) Calculated power spectra versus the normalized transverse wavenumber for substrate/ZnO/Ag, The refractive index of the substrate varies from 2 to 6.

Fig. 4.
Fig. 4.

(a) Calculated power spectrum versus the normalized transverse wavenumber of quartz/ZnO/Ag, sapphire/ZnO/Ag, and Si/SiO2/ZnO/Ag; (b) Photoluminescence of Si/SiO2/ZnO/Ag and reference sample.

Metrics