Abstract

We experimentally demonstrate a tunable negative permeability metamaterial (NPM) at microwave frequencies by introducing yttrium iron garnet (YIG) rods into a periodic array of split ring resonators (SRRs). Different from those tuned by controlling the capacitance of equivalent LC circuit of SRR, this metamaterial is based on a mechanism of magnetically tuning the inductance via the active ambient effective permeability. For magnetic fields from 0 to 2000 Oe and from 3200 to 6000 Oe, the resonance frequencies of the metamaterial can blueshift about 350 MHz and redshift about 315 MHz, respectively. Both shifts are completely continuous and reversible. Correspondingly, the tunable negative permeabilities are widened by about 360 MHz and 200 MHz compared to that without YIG rods.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  4. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell???s law," Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef] [PubMed]
  5. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  6. N. Seddon and T. Bearpark, "Observation of the inverse Doppler effect," Science 302, 1537-1540 (2003).
    [CrossRef] [PubMed]
  7. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Soviet Physics USPEKI 10, 509-514 (1968).
    [CrossRef]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4808 (1998).
    [CrossRef]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
    [CrossRef] [PubMed]
  11. W. Cai, U. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007).
    [CrossRef]
  12. F. J. Rachford, D. N. Armstead, V. G. Harris and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Phys. Rev. Lett. 99, 057202 (2007).
    [CrossRef] [PubMed]
  13. A. Pimenov, A. Loid, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Phys. Rev. Lett. 98, 197401 (2007).
    [CrossRef] [PubMed]
  14. H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007).
    [CrossRef]
  15. B. Hou, G. Xu, H. K. Wong, and W. J. Wen, "Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials," Opt. Express 13, 9149-9154 (2005).
    [CrossRef] [PubMed]
  16. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  17. X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
    [CrossRef]
  18. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
    [CrossRef] [PubMed]
  19. I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
    [CrossRef]
  20. H. Chen, Bae-Ian Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
    [CrossRef]
  21. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express 14, 9344-9349 (2006).
    [CrossRef] [PubMed]
  22. Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
    [CrossRef]
  23. D. H. Werner, Do-Hoon Kwon, and Iam-Choon Khoo, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007).
    [CrossRef] [PubMed]
  24. A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007).
    [CrossRef] [PubMed]
  25. E. Ozbay, K. Aydin, S. Butun, K. Kolodziejak, and D. Pawlak, "Ferroelectric based tuneable SRR based metamaterial for microwave applications," in Proceedings of the 37th European Microwave Conference (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 497-499.
  26. W. A. Roshen, "Effect of Finite Thickness of Magnetic Substrate on Planar Inductors," IEEE Trans. Magn. 26, 270-275 (1990).
    [CrossRef]
  27. K. Shirakawa, S. Ishibashi, Y. Kobayashi, F. Takeda, and K. Murakami, "A new planar inductor with ring-connected magnetic core," IEEE Trans. Magn. 26, 2268-2270 (1990).
    [CrossRef]
  28. X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
    [CrossRef]
  29. B. Lax and K. J. Button, Microwave ferrites and ferrimagnetics, (McGraw-Hill, New York, 1962).
  30. V. B. Bregara and M. Pavlin, "Effective-susceptibility tensor for a composite with ferromagnetic inclusions: enhancement of effective-media theory and alternative ferromagnetic approach," J. Appl. Phys. 95, 6289-6293 (2004).
    [CrossRef]
  31. V. B. Bregara, "Effective-medium approach to the magnetic susceptibility of compositeswith ferromagnetic inclusions," Phys. Rev. B 71, 174418 (2005).
    [CrossRef]
  32. G. W. Milton, "Bounds on the complex permettivity of a two-component composite material," J. Appl. Phys. 52, 5286-5293 (1981).
    [CrossRef]
  33. A. M. Nicholson and G. F. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas. IM-19, 377-382 (1970).
    [CrossRef]
  34. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
    [CrossRef]
  35. O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198-1200 (2004).
    [CrossRef]

2007 (8)

W. Cai, U. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007).
[CrossRef]

F. J. Rachford, D. N. Armstead, V. G. Harris and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Phys. Rev. Lett. 99, 057202 (2007).
[CrossRef] [PubMed]

A. Pimenov, A. Loid, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Phys. Rev. Lett. 98, 197401 (2007).
[CrossRef] [PubMed]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

D. H. Werner, Do-Hoon Kwon, and Iam-Choon Khoo, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007).
[CrossRef] [PubMed]

A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007).
[CrossRef] [PubMed]

X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
[CrossRef]

2006 (5)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

H. Chen, Bae-Ian Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

H. Chen, Bae-Ian Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express 14, 9344-9349 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

2005 (4)

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

B. Hou, G. Xu, H. K. Wong, and W. J. Wen, "Tuning of photonic bandgaps by a field-induced structural change of fractal metamaterials," Opt. Express 13, 9149-9154 (2005).
[CrossRef] [PubMed]

V. B. Bregara, "Effective-medium approach to the magnetic susceptibility of compositeswith ferromagnetic inclusions," Phys. Rev. B 71, 174418 (2005).
[CrossRef]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

2004 (3)

O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198-1200 (2004).
[CrossRef]

V. B. Bregara and M. Pavlin, "Effective-susceptibility tensor for a composite with ferromagnetic inclusions: enhancement of effective-media theory and alternative ferromagnetic approach," J. Appl. Phys. 95, 6289-6293 (2004).
[CrossRef]

I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

2003 (3)

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell???s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

N. Seddon and T. Bearpark, "Observation of the inverse Doppler effect," Science 302, 1537-1540 (2003).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4808 (1998).
[CrossRef]

1990 (2)

W. A. Roshen, "Effect of Finite Thickness of Magnetic Substrate on Planar Inductors," IEEE Trans. Magn. 26, 270-275 (1990).
[CrossRef]

K. Shirakawa, S. Ishibashi, Y. Kobayashi, F. Takeda, and K. Murakami, "A new planar inductor with ring-connected magnetic core," IEEE Trans. Magn. 26, 2268-2270 (1990).
[CrossRef]

1981 (1)

G. W. Milton, "Bounds on the complex permettivity of a two-component composite material," J. Appl. Phys. 52, 5286-5293 (1981).
[CrossRef]

1970 (1)

A. M. Nicholson and G. F. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas. IM-19, 377-382 (1970).
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Soviet Physics USPEKI 10, 509-514 (1968).
[CrossRef]

Acher, O.

O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198-1200 (2004).
[CrossRef]

Armstead, D. N.

F. J. Rachford, D. N. Armstead, V. G. Harris and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Phys. Rev. Lett. 99, 057202 (2007).
[CrossRef] [PubMed]

Averitt, R. D.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Bae-Ian Wu, H.

H. Chen, Bae-Ian Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Bai, Y.

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007).
[CrossRef]

Bearpark, T.

N. Seddon and T. Bearpark, "Observation of the inverse Doppler effect," Science 302, 1537-1540 (2003).
[CrossRef] [PubMed]

Bonache, J.

I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Bregara, V. B.

V. B. Bregara, "Effective-medium approach to the magnetic susceptibility of compositeswith ferromagnetic inclusions," Phys. Rev. B 71, 174418 (2005).
[CrossRef]

V. B. Bregara and M. Pavlin, "Effective-susceptibility tensor for a composite with ferromagnetic inclusions: enhancement of effective-media theory and alternative ferromagnetic approach," J. Appl. Phys. 95, 6289-6293 (2004).
[CrossRef]

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell???s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Cai, W.

W. Cai, U. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007).
[CrossRef]

Cao, Y.

X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
[CrossRef]

Chen, H.

H. Chen, Bae-Ian Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Chen, H. T.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Chettiar, U.

W. Cai, U. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007).
[CrossRef]

Choi, H.

X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
[CrossRef]

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell???s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
[CrossRef] [PubMed]

Degiron, A.

Ding, W.

X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
[CrossRef]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Fu, Q. H.

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Gao, X. Y.

X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
[CrossRef]

Garcia, J. G.

I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Gehrke, K.

A. Pimenov, A. Loid, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Phys. Rev. Lett. 98, 197401 (2007).
[CrossRef] [PubMed]

Gil, I.

I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Harris, V. G.

F. J. Rachford, D. N. Armstead, V. G. Harris and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Phys. Rev. Lett. 99, 057202 (2007).
[CrossRef] [PubMed]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4808 (1998).
[CrossRef]

Hou, B.

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell???s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Ishibashi, S.

K. Shirakawa, S. Ishibashi, Y. Kobayashi, F. Takeda, and K. Murakami, "A new planar inductor with ring-connected magnetic core," IEEE Trans. Magn. 26, 2268-2270 (1990).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
[CrossRef] [PubMed]

Kang, L.

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Kildishev, A. V.

W. Cai, U. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007).
[CrossRef]

Kivshar, Y. S.

Kobayashi, Y.

K. Shirakawa, S. Ishibashi, Y. Kobayashi, F. Takeda, and K. Murakami, "A new planar inductor with ring-connected magnetic core," IEEE Trans. Magn. 26, 2268-2270 (1990).
[CrossRef]

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Lei, C.

X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
[CrossRef]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007).
[CrossRef]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Loid, A.

A. Pimenov, A. Loid, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Phys. Rev. Lett. 98, 197401 (2007).
[CrossRef] [PubMed]

Marques, R.

I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Martin, F.

I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Milton, G. W.

G. W. Milton, "Bounds on the complex permettivity of a two-component composite material," J. Appl. Phys. 52, 5286-5293 (1981).
[CrossRef]

Mock, J. J.

A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
[CrossRef] [PubMed]

Morrison, S. K.

Moshnyaga, V.

A. Pimenov, A. Loid, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Phys. Rev. Lett. 98, 197401 (2007).
[CrossRef] [PubMed]

Murakami, K.

K. Shirakawa, S. Ishibashi, Y. Kobayashi, F. Takeda, and K. Murakami, "A new planar inductor with ring-connected magnetic core," IEEE Trans. Magn. 26, 2268-2270 (1990).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nicholson, A. M.

A. M. Nicholson and G. F. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas. IM-19, 377-382 (1970).
[CrossRef]

Padilla, W. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Pavlin, M.

V. B. Bregara and M. Pavlin, "Effective-susceptibility tensor for a composite with ferromagnetic inclusions: enhancement of effective-media theory and alternative ferromagnetic approach," J. Appl. Phys. 95, 6289-6293 (2004).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4808 (1998).
[CrossRef]

Pimenov, A.

A. Pimenov, A. Loid, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Phys. Rev. Lett. 98, 197401 (2007).
[CrossRef] [PubMed]

Rachford, F. J.

F. J. Rachford, D. N. Armstead, V. G. Harris and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Phys. Rev. Lett. 99, 057202 (2007).
[CrossRef] [PubMed]

Reynet, O.

O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198-1200 (2004).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4808 (1998).
[CrossRef]

Roshen, W. A.

W. A. Roshen, "Effect of Finite Thickness of Magnetic Substrate on Planar Inductors," IEEE Trans. Magn. 26, 270-275 (1990).
[CrossRef]

Ross, G. F.

A. M. Nicholson and G. F. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas. IM-19, 377-382 (1970).
[CrossRef]

Samwer, K.

A. Pimenov, A. Loid, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Phys. Rev. Lett. 98, 197401 (2007).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
[CrossRef] [PubMed]

Seddon, N.

N. Seddon and T. Bearpark, "Observation of the inverse Doppler effect," Science 302, 1537-1540 (2003).
[CrossRef] [PubMed]

Shadrivov, I. V.

Shalaev, V. M.

W. Cai, U. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shirakawa, K.

K. Shirakawa, S. Ishibashi, Y. Kobayashi, F. Takeda, and K. Murakami, "A new planar inductor with ring-connected magnetic core," IEEE Trans. Magn. 26, 2268-2270 (1990).
[CrossRef]

Smith, D. R.

A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Song, J.

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Sorolla, M.

I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
[CrossRef] [PubMed]

Steward, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4808 (1998).
[CrossRef]

Takeda, F.

K. Shirakawa, S. Ishibashi, Y. Kobayashi, F. Takeda, and K. Murakami, "A new planar inductor with ring-connected magnetic core," IEEE Trans. Magn. 26, 2268-2270 (1990).
[CrossRef]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Taylor, A. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Soviet Physics USPEKI 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Vittoria, C.

F. J. Rachford, D. N. Armstead, V. G. Harris and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Phys. Rev. Lett. 99, 057202 (2007).
[CrossRef] [PubMed]

Wen, W. J.

Werner, D. H.

Won, J.

X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
[CrossRef]

Wong, H. K.

Xu, G.

Zhao, H. J.

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007).
[CrossRef]

Zhao, Q.

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Zhao, X. P.

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Zhou, J.

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Zhou, Y.

X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
[CrossRef]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007).
[CrossRef]

H. Chen, Bae-Ian Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

O. Reynet and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198-1200 (2004).
[CrossRef]

Electron. Lett. (1)

I. Gil, J. G. Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

IEEE Trans. Elec. Pack. & Manu. (1)

X. Y. Gao, Y. Zhou, Y. Cao, C. Lei, W. Ding, H. Choi, and J. Won, "A copper/polyimide fabrication process for fabricating high-inductance microinductor," IEEE Trans. Elec. Pack. & Manu. 30, 123-127 (2007)
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. M. Nicholson and G. F. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas. IM-19, 377-382 (1970).
[CrossRef]

IEEE Trans. Magn. (2)

W. A. Roshen, "Effect of Finite Thickness of Magnetic Substrate on Planar Inductors," IEEE Trans. Magn. 26, 270-275 (1990).
[CrossRef]

K. Shirakawa, S. Ishibashi, Y. Kobayashi, F. Takeda, and K. Murakami, "A new planar inductor with ring-connected magnetic core," IEEE Trans. Magn. 26, 2268-2270 (1990).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Appl. Phys. (2)

G. W. Milton, "Bounds on the complex permettivity of a two-component composite material," J. Appl. Phys. 52, 5286-5293 (1981).
[CrossRef]

V. B. Bregara and M. Pavlin, "Effective-susceptibility tensor for a composite with ferromagnetic inclusions: enhancement of effective-media theory and alternative ferromagnetic approach," J. Appl. Phys. 95, 6289-6293 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4808 (1998).
[CrossRef]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Nature Photonics (1)

W. Cai, U. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007).
[CrossRef]

Opt. Express (4)

Phys. Lett. A (1)

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Phys. Rev. B (1)

V. B. Bregara, "Effective-medium approach to the magnetic susceptibility of compositeswith ferromagnetic inclusions," Phys. Rev. B 71, 174418 (2005).
[CrossRef]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Phys. Rev. Lett. (7)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

F. J. Rachford, D. N. Armstead, V. G. Harris and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Phys. Rev. Lett. 99, 057202 (2007).
[CrossRef] [PubMed]

A. Pimenov, A. Loid, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Phys. Rev. Lett. 98, 197401 (2007).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell???s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Science (3)

N. Seddon and T. Bearpark, "Observation of the inverse Doppler effect," Science 302, 1537-1540 (2003).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006).
[CrossRef] [PubMed]

Soviet Physics USPEKI (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Soviet Physics USPEKI 10, 509-514 (1968).
[CrossRef]

Other (2)

E. Ozbay, K. Aydin, S. Butun, K. Kolodziejak, and D. Pawlak, "Ferroelectric based tuneable SRR based metamaterial for microwave applications," in Proceedings of the 37th European Microwave Conference (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 497-499.

B. Lax and K. J. Button, Microwave ferrites and ferrimagnetics, (McGraw-Hill, New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the magnetically tunable negative permeability metamaterial (NPM) composed of SRRs and YIG rods. Electromagnetic wave with magnetic field polarized along the x direction propagates along the y axis. External dc magnetic fields (H0 ) are applied along the z axis. Dependence of S21 parameter and effective permeability of sole NPM without YIG rods on frequency are shown in the upper inset.

Fig. 2.
Fig. 2.

Qualitative evolution of the dependence of μ ¯ x,am on magnetic field based on calculation of that of single YIG rod [29]. Applied magnetic field is divided into three regimes of “low”, “medium” and “high” according to the evolution.

Fig. 3.
Fig. 3.

Calculated and retrieved effective permeabilities (by Eq. (1) and retrieval procedure [33, 34] respectively) of the simulation model (NPM with YIG rods) under dc magnetic fields of 0, 2000 and 4000 Oe are shown. The inset shows the model of simulation.

Fig. 4.
Fig. 4.

(a) Experimental S21 parameters of NPM sample with dc magnetic field within the range of zero to 2000 Oe. (b) The dispersions of effective permeabilities of the NPM sample under corresponding dc magnetic field according to Eq. (1).

Fig. 5.
Fig. 5.

(a) Experimental S21 parameters of NPM sample with dc magnetic field within the range of 3200 to 6000 Oe. (b) The dispersions of effective permeabilities of the NPM sample under corresponding dc magnetic field according to Eq. (1).

Fig. 6.
Fig. 6.

(a) Experimental S21 parameters of NPM sample with the dc magnetic field of 2600 Oe. (b) Dependence of the resonance frequency (Res. freq) tuning and transmission tuning of the resonance dips on the applied magnetic field compared that of zero magnetic field.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ ¯ meta ( ω ) = 1 F ω 2 ω 2 ω 0 2 + i Γ ω

Metrics