Abstract

We report on the production and characterisation of optical microring resonators and optical channel waveguides by using fluorine-ion implantation and planar structuring in lithium niobate. We demonstrate the production of single-mode planar waveguides by low fluence fluorine-ion implantation (ϕ=2.5·1014 ions/cm2) into lithium niobate wafers. The waveguides are strongly confined by the amorphous 2-µm wide optical barrier induced by the implantation process. A refractive index contrast of Δno=0.17 at the telecom wavelength λ=1.5 µm has been determined between the waveguide and the barrier. Planar structuring with ridge height of up to 1.2 µm has been achieved by laser lithography masking and Ar+ sputtering. For TE waves, the channel waveguides exhibit propagation losses lower than 8 dB/cm. First ring resonators with 80-µm radius have been fabricated by planar structuring in fluorine-ion implanted lithium niobate. The measured resonance curves show an extinction ratio of 14 dB, a free spectral range of 2.0 nm and a finesse of 4.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. P. Rabiei, W. H. Steier, C. Zhang, and L. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
    [CrossRef]
  3. C-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
    [CrossRef]
  4. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nature Photon. 1, 407–410 (2007).
    [CrossRef]
  5. T-J. Wang, C-H. Chu, and C-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32, 2777–2779 (2007).
    [CrossRef] [PubMed]
  6. M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74, 407–414 (2002).
    [CrossRef]
  7. M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proceedings 135, Pt. J, No 2, 85–91 (1988).
  8. A. Mahapatra and W. C. Robinson, “Integrated-optic ring resonators made by proton exchange in lithium niobate,” Appl. Opt. 24, 2285–2286 (1985).
    [CrossRef] [PubMed]
  9. W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-Doped Lithium Niobate Waveguide Lasers,” IEICE Trans. Electron. E88-C, 990–996 (2005).
    [CrossRef]
  10. T-J. Wang and C-H. Chu, “Wavelength-Tunable Microring Resonator on Lithium Niobate,” IEEE Photon. Technol. Lett. 19, 1904–1906 (2007).
    [CrossRef]
  11. F. Chen, X-L. Wang, and K-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mat. 29, 1523–1542 (2007).
    [CrossRef]
  12. A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
    [CrossRef]
  13. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
    [CrossRef]
  14. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
    [CrossRef]
  15. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).
  16. Concept to Volume (C2V), “OlympIOs Integrated Optics Software,” http://www.c2v.nl
  17. A. Majkić, G. Poberaj, R. Degl’Innocenti, M. Döbeli, and P. Günter, “Cr:LiSrAlF6 channel waveguides as broadband fluorescence sources,” Appl. Phys. B 88, 205–209 (2007).
    [CrossRef]
  18. R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
    [CrossRef]
  19. R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl.Phys. B 36, 143–147 (1985).
    [CrossRef]
  20. M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of Optical Microresonator Devices,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds., (AIP Conference Proceedings, Melville, New York, 2004).
  21. H. Tazawa and H. Steier, “Analysis of Ring Resonator-Based Travelling-Wave Modulators,” IEEE Photon. Technol. Lett. 18, 211–213 (2006).
    [CrossRef]

2007 (7)

T-J. Wang and C-H. Chu, “Wavelength-Tunable Microring Resonator on Lithium Niobate,” IEEE Photon. Technol. Lett. 19, 1904–1906 (2007).
[CrossRef]

F. Chen, X-L. Wang, and K-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mat. 29, 1523–1542 (2007).
[CrossRef]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

A. Majkić, G. Poberaj, R. Degl’Innocenti, M. Döbeli, and P. Günter, “Cr:LiSrAlF6 channel waveguides as broadband fluorescence sources,” Appl. Phys. B 88, 205–209 (2007).
[CrossRef]

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nature Photon. 1, 407–410 (2007).
[CrossRef]

T-J. Wang, C-H. Chu, and C-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32, 2777–2779 (2007).
[CrossRef] [PubMed]

2006 (1)

H. Tazawa and H. Steier, “Analysis of Ring Resonator-Based Travelling-Wave Modulators,” IEEE Photon. Technol. Lett. 18, 211–213 (2006).
[CrossRef]

2005 (2)

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-Doped Lithium Niobate Waveguide Lasers,” IEICE Trans. Electron. E88-C, 990–996 (2005).
[CrossRef]

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

C-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

2002 (2)

P. Rabiei, W. H. Steier, C. Zhang, and L. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
[CrossRef]

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74, 407–414 (2002).
[CrossRef]

1999 (1)

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
[CrossRef]

1988 (1)

M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proceedings 135, Pt. J, No 2, 85–91 (1988).

1985 (2)

A. Mahapatra and W. C. Robinson, “Integrated-optic ring resonators made by proton exchange in lithium niobate,” Appl. Opt. 24, 2285–2286 (1985).
[CrossRef] [PubMed]

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl.Phys. B 36, 143–147 (1985).
[CrossRef]

Agulló-López, F.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Agulló-Rueda,

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

Armenise, M. N.

M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proceedings 135, Pt. J, No 2, 85–91 (1988).

Bakhru, R.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
[CrossRef]

Biersack, J. P.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

Caballero, O.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Carrascosa, M.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

Chao, C-Y.

C-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

Chen, F.

F. Chen, X-L. Wang, and K-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mat. 29, 1523–1542 (2007).
[CrossRef]

Chu, C-H.

T-J. Wang, C-H. Chu, and C-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32, 2777–2779 (2007).
[CrossRef] [PubMed]

T-J. Wang and C-H. Chu, “Wavelength-Tunable Microring Resonator on Lithium Niobate,” IEEE Photon. Technol. Lett. 19, 1904–1906 (2007).
[CrossRef]

Dalton, L.

Das, B. K.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-Doped Lithium Niobate Waveguide Lasers,” IEICE Trans. Electron. E88-C, 990–996 (2005).
[CrossRef]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nature Photon. 1, 407–410 (2007).
[CrossRef]

A. Majkić, G. Poberaj, R. Degl’Innocenti, M. Döbeli, and P. Günter, “Cr:LiSrAlF6 channel waveguides as broadband fluorescence sources,” Appl. Phys. B 88, 205–209 (2007).
[CrossRef]

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
[CrossRef]

Dey, D.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-Doped Lithium Niobate Waveguide Lasers,” IEICE Trans. Electron. E88-C, 990–996 (2005).
[CrossRef]

Döbeli, M.

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
[CrossRef]

A. Majkić, G. Poberaj, R. Degl’Innocenti, M. Döbeli, and P. Günter, “Cr:LiSrAlF6 channel waveguides as broadband fluorescence sources,” Appl. Phys. B 88, 205–209 (2007).
[CrossRef]

Evans, C.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
[CrossRef]

García, G.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Cabañes, A.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Navarro, A.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nature Photon. 1, 407–410 (2007).
[CrossRef]

Günter, P.

A. Majkić, G. Poberaj, R. Degl’Innocenti, M. Döbeli, and P. Günter, “Cr:LiSrAlF6 channel waveguides as broadband fluorescence sources,” Appl. Phys. B 88, 205–209 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nature Photon. 1, 407–410 (2007).
[CrossRef]

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
[CrossRef]

Guo, L. J.

C-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

Hammer, M.

M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of Optical Microresonator Devices,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds., (AIP Conference Proceedings, Melville, New York, 2004).

Hiremath, K. R.

M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of Optical Microresonator Devices,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds., (AIP Conference Proceedings, Melville, New York, 2004).

Jazbinšek, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74, 407–414 (2002).
[CrossRef]

Kumar, A.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
[CrossRef]

Levy, M.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
[CrossRef]

Lin, C-Y.

Littmark, U.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

Mahapatra, A.

Majkic, A.

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
[CrossRef]

A. Majkić, G. Poberaj, R. Degl’Innocenti, M. Döbeli, and P. Günter, “Cr:LiSrAlF6 channel waveguides as broadband fluorescence sources,” Appl. Phys. B 88, 205–209 (2007).
[CrossRef]

Olivares, J.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Osgood, R. M.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
[CrossRef]

Poberaj, G.

A. Majkić, G. Poberaj, R. Degl’Innocenti, M. Döbeli, and P. Günter, “Cr:LiSrAlF6 channel waveguides as broadband fluorescence sources,” Appl. Phys. B 88, 205–209 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nature Photon. 1, 407–410 (2007).
[CrossRef]

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
[CrossRef]

Rabiei, P.

Radojevic, A. M.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl.Phys. B 36, 143–147 (1985).
[CrossRef]

Reza, S.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-Doped Lithium Niobate Waveguide Lasers,” IEICE Trans. Electron. E88-C, 990–996 (2005).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nature Photon. 1, 407–410 (2007).
[CrossRef]

Ricken, R.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-Doped Lithium Niobate Waveguide Lasers,” IEICE Trans. Electron. E88-C, 990–996 (2005).
[CrossRef]

Robinson, W. C.

Sohler, W.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-Doped Lithium Niobate Waveguide Lasers,” IEICE Trans. Electron. E88-C, 990–996 (2005).
[CrossRef]

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl.Phys. B 36, 143–147 (1985).
[CrossRef]

Steier, H.

H. Tazawa and H. Steier, “Analysis of Ring Resonator-Based Travelling-Wave Modulators,” IEEE Photon. Technol. Lett. 18, 211–213 (2006).
[CrossRef]

Steier, W. H.

Stoffer, R.

M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of Optical Microresonator Devices,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds., (AIP Conference Proceedings, Melville, New York, 2004).

Suche, H.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-Doped Lithium Niobate Waveguide Lasers,” IEICE Trans. Electron. E88-C, 990–996 (2005).
[CrossRef]

Tazawa, H.

H. Tazawa and H. Steier, “Analysis of Ring Resonator-Based Travelling-Wave Modulators,” IEEE Photon. Technol. Lett. 18, 211–213 (2006).
[CrossRef]

Tian, C.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Vorburger, P.

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
[CrossRef]

Wang, K-M.

F. Chen, X-L. Wang, and K-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mat. 29, 1523–1542 (2007).
[CrossRef]

Wang, T-J.

T-J. Wang, C-H. Chu, and C-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32, 2777–2779 (2007).
[CrossRef] [PubMed]

T-J. Wang and C-H. Chu, “Wavelength-Tunable Microring Resonator on Lithium Niobate,” IEEE Photon. Technol. Lett. 19, 1904–1906 (2007).
[CrossRef]

Wang, X-L.

F. Chen, X-L. Wang, and K-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mat. 29, 1523–1542 (2007).
[CrossRef]

Zgonik, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74, 407–414 (2002).
[CrossRef]

Zhang, C.

Ziegler, J. F.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

Appl. Opt. (1)

Appl. Phys. B (2)

A. Majkić, G. Poberaj, R. Degl’Innocenti, M. Döbeli, and P. Günter, “Cr:LiSrAlF6 channel waveguides as broadband fluorescence sources,” Appl. Phys. B 88, 205–209 (2007).
[CrossRef]

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74, 407–414 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
[CrossRef]

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, R. Bakhru, C. Tian, and C. Evans, “Large etchselectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74, 3197–3199 (1999).
[CrossRef]

C-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

Appl.Phys. B (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl.Phys. B 36, 143–147 (1985).
[CrossRef]

IEE Proceedings (1)

M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proceedings 135, Pt. J, No 2, 85–91 (1988).

IEEE Photon. Technol. Lett. (2)

H. Tazawa and H. Steier, “Analysis of Ring Resonator-Based Travelling-Wave Modulators,” IEEE Photon. Technol. Lett. 18, 211–213 (2006).
[CrossRef]

T-J. Wang and C-H. Chu, “Wavelength-Tunable Microring Resonator on Lithium Niobate,” IEEE Photon. Technol. Lett. 19, 1904–1906 (2007).
[CrossRef]

IEICE Trans. Electron. (1)

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-Doped Lithium Niobate Waveguide Lasers,” IEICE Trans. Electron. E88-C, 990–996 (2005).
[CrossRef]

J. Appl. Phys. (1)

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101, 033512 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Nature Photon. (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nature Photon. 1, 407–410 (2007).
[CrossRef]

Opt. Lett. (1)

Opt. Mat. (1)

F. Chen, X-L. Wang, and K-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mat. 29, 1523–1542 (2007).
[CrossRef]

Other (3)

M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of Optical Microresonator Devices,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds., (AIP Conference Proceedings, Melville, New York, 2004).

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

Concept to Volume (C2V), “OlympIOs Integrated Optics Software,” http://www.c2v.nl

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a). Depth position of the high-energy (closer to surface, open circles) and low-energy (closed circles) crystalline-amorphous boundaries as a function of implantation fluence. Measurements were performed on samples irradiated with 22 MeV F4+ ions (del =4.7 µm): our measurements (open circles), data from [13] (full circles). The barrier width dB for fluence ϕ=2.5·1014 ions/cm2 is shown. The lines connecting the points are guides to the eye. (b). Simulated depth position of the maximal electronic stopping power del in F-implanted LiNbO3 as a function of ion energy. The line is the polynomial approximation discussed in the text. dB and the estimated waveguide thickness for ϕ=2.5·1014 ions/cm2 and E=14.5 MeV are shown.

Fig. 2.
Fig. 2.

Calculated combined bending and tunnelling losses (left scale) and effective mode index Neff at ring’s outer rim (right scale) as a function of the waveguide bend radius. Neff of the straight waveguide with the same cross-section is 2.159. Calculation is for the first TE optical mode and wavelength 1.55 µm. Waveguide cross-section dimensions as in Fig. 3.

Fig. 3.
Fig. 3.

Simulation of light propagation in the waveguide of interest. (a) Vertical index profile of the waveguide structure (at X=0). (b) Simulated electric field profile of the first TE optical mode at λ=1.55 µm in the waveguide with 80 µm bend radius. Optical barrier width is 2 µm. Waveguide cross-section is trapezoidal with waveguide height 1.35 um, ridge height 1.2 µm, base width 3.7 µm and top width 2.7 µm.

Fig. 4.
Fig. 4.

Scanning electron micrograph of a microring resonator and a bus waveguide, structured in LiNbO3. (a). The whole ring and the bus waveguide. Ring radius is 80 µm, ridge height is 1.2 µm. (b). Enlarged coupling region, the gap size is ~0.2 µm.

Fig. 5.
Fig. 5.

SEM image of the fabricated ridge structure. The waveguide cross-section is trapezoidal with the base width 3.7 µm, top width 2.7 µm and ridge height 1.2 µm. The amorphised barrier layer beneath the ridge is visible.

Fig. 6.
Fig. 6.

Measured TE wave transmission spectrum of the bus waveguide coupled to a microring resonator. Small oscillations seen at the regions outside of resonances stem from Fabry-Perot resonances of the 5.6 mm long waveguide.

Fig. 7.
Fig. 7.

Simulated electric potential in the waveguide cross-section upon the application of a voltage V=100 V between the electrodes. Equipotential contours separate a 5 V potential drop. About 55% of the potential drop occurs in the SiO2 buffer layer.

Fig. 8.
Fig. 8.

(red) Measured light transmission as a function of the roundtrip phase θ. The line connecting the points is a guide to the eye. (blue) Transmission curve (T=cos2(φ/2)) of an equivalent Mach-Zehnder modulator, for phase φ=θ - π. Points of maximum transmission slopes |dT/|max are marked with arrows.

Tables (1)

Tables Icon

Table 1. Properties of demonstrated microring resonators in LiNbO3

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ λ FSR = λ 2 2 π R · N g = 2.03 n m .
δ ( N eff ( λ ) L λ ) = 0 gives ( 1 λ N eff λ N eff λ 2 ) δ λ + 1 λ δ N eff = 0 ,
hence δ λ = λ N g δ N eff .
V π eq = π 2 ( d T d V max ) 1 = π 2 ( d T d θ d θ d V max ) 1 = V π 0 2 d T d θ max ,

Metrics