Abstract

Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 µm, as well as high emissivity up to 0.65 at a wavelength of 3.7µm. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).
  2. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
    [CrossRef]
  3. S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
    [CrossRef]
  4. H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Appl. Phys. Lett. 82, 1685-1687 (2003).
    [CrossRef]
  5. J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, "Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission," Adv. Mater. 19, 791-794 (2007).
    [CrossRef]
  6. P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction," Phys. Rev. B 37, 10795-10802 (1988).
    [CrossRef]
  7. Q1. F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Trans. 129, 11 (2007).
    [CrossRef]
  8. J. C. W. Lee and C. T. Chan, "Circularly polarized thermal radiation from layer-by-layer photonic crystal structures," Appl. Phys. Lett. 90, 051912 (2007).
    [CrossRef]
  9. S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, "Enhanced thermal emission from individual antenna-like nanoheaters," Opt. Express 15, 11249 (2007).
    [CrossRef] [PubMed]
  10. T. Saito, L. R. Hughey, J. E. Proctor, and T. R. O???Brian, "Polarization characteristics of silicon photodiodes and their dependence on oxide thickness," Rev. Sci. Instrum. 67, 3362 (1996).
    [CrossRef]
  11. N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, "FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage," Biopolymers 62, 1-8 (2001).
    [CrossRef] [PubMed]
  12. H. Arimoto, "Multispectral polarization imaging for observing blood oxygen saturation in skin tissue," Appl. Spectrosc. 60, 459-464 (2006).
    [CrossRef] [PubMed]
  13. E.W. Thulstrup and J. Michl, Elementary Polarization Spectroscopy (VCH, New York, 1989), Chap. 3.
  14. A. G. Worthing, "Deviation from Lambert???s law and polarization of light emitted by incandescent tungsten, tantalum and molybdenum and changes in the optical constants of tungsten with temperature," J. Opt. Soc. Am. 13, 635-650 (1926).
    [CrossRef]
  15. O. Sandus, "A review of emission polarization," Appl. Opt. 4, 1634-1642 (1965).
    [CrossRef]
  16. J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published).
    [PubMed]
  17. J.-H. Lee, C.-H. Kim, K. Constant, and K.-M. Ho, "Two-polymer microtransfer molding for highly layered microstructures," Adv. Mater. 17, 2481-2485 (2005).
    [CrossRef]
  18. J. B. Pendry, "Photonic band structures," J. Mod. Opt. 41, 209-229 (1994).
    [CrossRef]
  19. Z.-Y. Li and L.-L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
    [CrossRef]
  20. D. W. Lynch and W. R. Hunter, "Nickel (Ni)" in Handbook of Optical Constants of Solid, E.D. Palik, ed. (Academic, London, 1985).
  21. Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties: Metallic Elements and Alloys (IFI/Plenum, New York, 1970).

2007 (4)

Q1. F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Trans. 129, 11 (2007).
[CrossRef]

J. C. W. Lee and C. T. Chan, "Circularly polarized thermal radiation from layer-by-layer photonic crystal structures," Appl. Phys. Lett. 90, 051912 (2007).
[CrossRef]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, "Enhanced thermal emission from individual antenna-like nanoheaters," Opt. Express 15, 11249 (2007).
[CrossRef] [PubMed]

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, "Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission," Adv. Mater. 19, 791-794 (2007).
[CrossRef]

2006 (1)

2005 (1)

J.-H. Lee, C.-H. Kim, K. Constant, and K.-M. Ho, "Two-polymer microtransfer molding for highly layered microstructures," Adv. Mater. 17, 2481-2485 (2005).
[CrossRef]

2003 (3)

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Appl. Phys. Lett. 82, 1685-1687 (2003).
[CrossRef]

Z.-Y. Li and L.-L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

2002 (1)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

2001 (1)

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, "FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage," Biopolymers 62, 1-8 (2001).
[CrossRef] [PubMed]

2000 (1)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

1996 (1)

T. Saito, L. R. Hughey, J. E. Proctor, and T. R. O???Brian, "Polarization characteristics of silicon photodiodes and their dependence on oxide thickness," Rev. Sci. Instrum. 67, 3362 (1996).
[CrossRef]

1994 (1)

J. B. Pendry, "Photonic band structures," J. Mod. Opt. 41, 209-229 (1994).
[CrossRef]

1988 (1)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction," Phys. Rev. B 37, 10795-10802 (1988).
[CrossRef]

1965 (1)

1926 (1)

Arimoto, H.

Au, Y.-Y.

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Bläsi, B.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Boerner, V.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Camacho, N. P.

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, "FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage," Biopolymers 62, 1-8 (2001).
[CrossRef] [PubMed]

Carminati, R.

Q1. F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Trans. 129, 11 (2007).
[CrossRef]

Chan, C. T.

J. C. W. Lee and C. T. Chan, "Circularly polarized thermal radiation from layer-by-layer photonic crystal structures," Appl. Phys. Lett. 90, 051912 (2007).
[CrossRef]

J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published).
[PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Constant, K.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, "Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission," Adv. Mater. 19, 791-794 (2007).
[CrossRef]

J.-H. Lee, C.-H. Kim, K. Constant, and K.-M. Ho, "Two-polymer microtransfer molding for highly layered microstructures," Adv. Mater. 17, 2481-2485 (2005).
[CrossRef]

J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published).
[PubMed]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Gebhart, B.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction," Phys. Rev. B 37, 10795-10802 (1988).
[CrossRef]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Gombert, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Greffet, J.-J.

Q1. F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Trans. 129, 11 (2007).
[CrossRef]

Hamann, H. F.

Heinzel, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction," Phys. Rev. B 37, 10795-10802 (1988).
[CrossRef]

Ho, K.-M.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, "Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission," Adv. Mater. 19, 791-794 (2007).
[CrossRef]

J.-H. Lee, C.-H. Kim, K. Constant, and K.-M. Ho, "Two-polymer microtransfer molding for highly layered microstructures," Adv. Mater. 17, 2481-2485 (2005).
[CrossRef]

J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published).
[PubMed]

Hughey, L. R.

T. Saito, L. R. Hughey, J. E. Proctor, and T. R. O???Brian, "Polarization characteristics of silicon photodiodes and their dependence on oxide thickness," Rev. Sci. Instrum. 67, 3362 (1996).
[CrossRef]

Ingvarsson, S.

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Appl. Phys. Lett. 82, 1685-1687 (2003).
[CrossRef]

Kim, C.-H.

J.-H. Lee, C.-H. Kim, K. Constant, and K.-M. Ho, "Two-polymer microtransfer molding for highly layered microstructures," Adv. Mater. 17, 2481-2485 (2005).
[CrossRef]

Kim, Y.-S.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, "Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission," Adv. Mater. 19, 791-794 (2007).
[CrossRef]

Klein, L. J.

Lacey, J. A.

Laroche, M.

Q1. F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Trans. 129, 11 (2007).
[CrossRef]

Lee, J. C. W.

J. C. W. Lee and C. T. Chan, "Circularly polarized thermal radiation from layer-by-layer photonic crystal structures," Appl. Phys. Lett. 90, 051912 (2007).
[CrossRef]

Lee, J.C.W.

J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published).
[PubMed]

Lee, J.-H.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, "Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission," Adv. Mater. 19, 791-794 (2007).
[CrossRef]

J.-H. Lee, C.-H. Kim, K. Constant, and K.-M. Ho, "Two-polymer microtransfer molding for highly layered microstructures," Adv. Mater. 17, 2481-2485 (2005).
[CrossRef]

J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published).
[PubMed]

Leung, W.

J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published).
[PubMed]

Li, M.

J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published).
[PubMed]

Li, Z.-Y.

Z.-Y. Li and L.-L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lin, L.-L.

Z.-Y. Li and L.-L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Luther, J.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Marquier, F.

Q1. F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Trans. 129, 11 (2007).
[CrossRef]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Mendelsohn, R.

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, "FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage," Biopolymers 62, 1-8 (2001).
[CrossRef] [PubMed]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

O???Brian, T. R.

T. Saito, L. R. Hughey, J. E. Proctor, and T. R. O???Brian, "Polarization characteristics of silicon photodiodes and their dependence on oxide thickness," Rev. Sci. Instrum. 67, 3362 (1996).
[CrossRef]

Pendry, J. B.

J. B. Pendry, "Photonic band structures," J. Mod. Opt. 41, 209-229 (1994).
[CrossRef]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Proctor, J. E.

T. Saito, L. R. Hughey, J. E. Proctor, and T. R. O???Brian, "Polarization characteristics of silicon photodiodes and their dependence on oxide thickness," Rev. Sci. Instrum. 67, 3362 (1996).
[CrossRef]

Puscasu, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Appl. Phys. Lett. 82, 1685-1687 (2003).
[CrossRef]

Saito, T.

T. Saito, L. R. Hughey, J. E. Proctor, and T. R. O???Brian, "Polarization characteristics of silicon photodiodes and their dependence on oxide thickness," Rev. Sci. Instrum. 67, 3362 (1996).
[CrossRef]

Sandus, O.

Torzilli, P. A.

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, "FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage," Biopolymers 62, 1-8 (2001).
[CrossRef] [PubMed]

West, P.

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, "FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage," Biopolymers 62, 1-8 (2001).
[CrossRef] [PubMed]

Wittwer, V.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Worthing, A. G.

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Appl. Phys. Lett. 82, 1685-1687 (2003).
[CrossRef]

Zemel, J. N.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction," Phys. Rev. B 37, 10795-10802 (1988).
[CrossRef]

Adv. Mater. (3)

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, "Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission," Adv. Mater. 19, 791-794 (2007).
[CrossRef]

J.-H. Lee, J.C.W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, "Polarization engineering of thermal radiation using metallic photonic crystals," Adv. Mater. (to be published).
[PubMed]

J.-H. Lee, C.-H. Kim, K. Constant, and K.-M. Ho, "Two-polymer microtransfer molding for highly layered microstructures," Adv. Mater. 17, 2481-2485 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4585-4587 (2002).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Appl. Phys. Lett. 82, 1685-1687 (2003).
[CrossRef]

J. C. W. Lee and C. T. Chan, "Circularly polarized thermal radiation from layer-by-layer photonic crystal structures," Appl. Phys. Lett. 90, 051912 (2007).
[CrossRef]

Appl. Spectrosc. (1)

Biopolymers (1)

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, "FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage," Biopolymers 62, 1-8 (2001).
[CrossRef] [PubMed]

J. Heat Trans. (1)

Q1. F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Trans. 129, 11 (2007).
[CrossRef]

J. Mod. Opt. (2)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

J. B. Pendry, "Photonic band structures," J. Mod. Opt. 41, 209-229 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Phys. Rev. B (1)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Polarized spectral emittance from periodic micromachined surface. I. Doped silicon: The normal direction," Phys. Rev. B 37, 10795-10802 (1988).
[CrossRef]

Phys. Rev. E (1)

Z.-Y. Li and L.-L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Saito, L. R. Hughey, J. E. Proctor, and T. R. O???Brian, "Polarization characteristics of silicon photodiodes and their dependence on oxide thickness," Rev. Sci. Instrum. 67, 3362 (1996).
[CrossRef]

Other (3)

D. W. Lynch and W. R. Hunter, "Nickel (Ni)" in Handbook of Optical Constants of Solid, E.D. Palik, ed. (Academic, London, 1985).

Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties: Metallic Elements and Alloys (IFI/Plenum, New York, 1970).

E.W. Thulstrup and J. Michl, Elementary Polarization Spectroscopy (VCH, New York, 1989), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM micrographs of the PTEs are shown with their diagrams of structures. The CPEs have three different configurations, (a) two identical gratings of “A”; (b) and (c) two different gratings of “A” and “B” with opposite orders of stacking. The polarization angle of TR is also graphically depicted.

Fig. 2.
Fig. 2.

Measured TR spectra of the PTEs at 800 K for the two polarization angles, parallel (red) and perpendicular (green) to the orientation of a top grating layer. (a) type-AAC; (b) type-BAC; (c) type-ABC. TR of a blackbody at the same conditions is plotted together (dashed).

Fig. 3.
Fig. 3.

(a) Measured emissivity spectra of the PTEs with (b) theoretically simulated absorptivity spectra.

Fig. 4.
Fig. 4.

The extinction ratio deduced from the measured spectral emissivities of the PTEs. Dashed lines represent that the dominant polarization is inverted, compared to that of the non-resonance regime.

Fig. 5.
Fig. 5.

E-field profiles of two unit-cells of the BAC structure are calculated at the wavelength of the peak for both polarizations (a) parallel and (b) perpendicular to the orientation of the top grating “B”. The magnitudes of the electric field are normalized to that of the incident wave and depicted in different color scales to show the intensified electric field clearly. The arrows show the electric-field directions of incident waves in the calculations. The changes in absorptivity spectra as functions of (c) the height and (d) the periodicity of the grating “A” are also calculated. The insets are the shift of peaks versus variation in height or periodicity of the grating “A”, respectively. The color of each marker is same as that of absorptivity spectrum.

Metrics