Abstract

Light focusing characteristics of a negative refractive lens fabricated out of a silicon-on-insulator photonic crystal (PC) slab are investigated theoretically and experimentally. It focuses in the near infrared, but the focal spot is degraded by a lens aberration. To reduce the aberration, we designed a composite PC that gives rise to a narrower focal spot. In addition, two unique functions of this lens are demonstrated: refocusing outside of the PC and parallel focusing, enabling image transfer and real image formation, respectively. These results prove the feasibility of an in-plane free space optical network based on negative refraction.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  5. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
    [CrossRef]
  6. I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
    [CrossRef] [PubMed]
  7. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, "Experimental studies of far-field superlens for sub-diffractional optical imaging," Opt. Express 15, 6947-6954 (2007).
    [CrossRef] [PubMed]
  8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
    [CrossRef]
  9. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
    [CrossRef]
  10. C. Luo, S. G. Johnson, and J. D. Joannopoulos, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
    [CrossRef]
  11. E. Cubukcu, K. Aydin, and E. Ozbay, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef] [PubMed]
  12. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
    [CrossRef] [PubMed]
  13. Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
    [CrossRef]
  14. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
    [CrossRef] [PubMed]
  15. T. Matsumoto, S. Fujita, and T. Baba, "Wavelength demultiplexer consisting of photonic crystal superprism and superlens," Opt. Express 13, 10768-10776 (2005).
    [CrossRef] [PubMed]
  16. T. Matsumoto, K. Eom, and T. Baba, "Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate," Opt. Lett. 31, 2786-2788 (2006).
    [CrossRef] [PubMed]
  17. E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (2006).
    [CrossRef]
  18. Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Murakowski, and D. W. Prather, "Negative refraction imaging in a hybrid photonic-crystal device at near-infrared frequencies," Opt. Express 15, 1286-1291 (2007).
    [CrossRef] [PubMed]
  19. T. Matsumoto and T. Baba, "Position-independent aperture effect of superlens," Spring Meet. Jpn. Soc. Appl. Phys. 29p-YV-5 (2005).
  20. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, 646-647 (2004).
    [CrossRef]
  21. A. Sakai, T. Fukazawa, and T. Baba, "Low loss ultra-small branches in Si photonic wire waveguides," IEICE Trans. Electron. E 85-C, 1033-1038 (2002).
  22. T. Matsumoto, T. Asatsuma, and T. Baba, "Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components," Appl. Phys. Lett. 91, 091117 (2007).
    [CrossRef]

2007 (5)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, "Experimental studies of far-field superlens for sub-diffractional optical imaging," Opt. Express 15, 6947-6954 (2007).
[CrossRef] [PubMed]

Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Murakowski, and D. W. Prather, "Negative refraction imaging in a hybrid photonic-crystal device at near-infrared frequencies," Opt. Express 15, 1286-1291 (2007).
[CrossRef] [PubMed]

T. Matsumoto, T. Asatsuma, and T. Baba, "Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components," Appl. Phys. Lett. 91, 091117 (2007).
[CrossRef]

2006 (2)

T. Matsumoto, K. Eom, and T. Baba, "Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate," Opt. Lett. 31, 2786-2788 (2006).
[CrossRef] [PubMed]

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (2006).
[CrossRef]

2005 (3)

Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. Matsumoto, S. Fujita, and T. Baba, "Wavelength demultiplexer consisting of photonic crystal superprism and superlens," Opt. Express 13, 10768-10776 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

2003 (2)

E. Cubukcu, K. Aydin, and E. Ozbay, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

2002 (2)

C. Luo, S. G. Johnson, and J. D. Joannopoulos, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

A. Sakai, T. Fukazawa, and T. Baba, "Low loss ultra-small branches in Si photonic wire waveguides," IEICE Trans. Electron. E 85-C, 1033-1038 (2002).

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000 (2)

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Asatsuma, T.

T. Matsumoto, T. Asatsuma, and T. Baba, "Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components," Appl. Phys. Lett. 91, 091117 (2007).
[CrossRef]

Aydin, K.

E. Cubukcu, K. Aydin, and E. Ozbay, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Baba, T.

T. Matsumoto, T. Asatsuma, and T. Baba, "Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components," Appl. Phys. Lett. 91, 091117 (2007).
[CrossRef]

T. Matsumoto, K. Eom, and T. Baba, "Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate," Opt. Lett. 31, 2786-2788 (2006).
[CrossRef] [PubMed]

T. Matsumoto, S. Fujita, and T. Baba, "Wavelength demultiplexer consisting of photonic crystal superprism and superlens," Opt. Express 13, 10768-10776 (2005).
[CrossRef] [PubMed]

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

A. Sakai, T. Fukazawa, and T. Baba, "Low loss ultra-small branches in Si photonic wire waveguides," IEICE Trans. Electron. E 85-C, 1033-1038 (2002).

Berrier, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Chen, C.

Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
[CrossRef]

Cubukcu, E.

E. Cubukcu, K. Aydin, and E. Ozbay, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Davis, C.

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Durant, S.

Eom, K.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Fujita, S.

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

A. Sakai, T. Fukazawa, and T. Baba, "Low loss ultra-small branches in Si photonic wire waveguides," IEICE Trans. Electron. E 85-C, 1033-1038 (2002).

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

Hodson, T. R.

Hung, Y.

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Johnson, S. G.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Lee, H.

Lin, C.

Liu, Z.

Lu, W. T.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Lu, Z.

Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Murakowski, and D. W. Prather, "Negative refraction imaging in a hybrid photonic-crystal device at near-infrared frequencies," Opt. Express 15, 1286-1291 (2007).
[CrossRef] [PubMed]

Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
[CrossRef]

Luo, C.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Matsumoto, T.

Miao, B.

Mulot, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Murakowski, J. A.

Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Murakowski, and D. W. Prather, "Negative refraction imaging in a hybrid photonic-crystal device at near-infrared frequencies," Opt. Express 15, 1286-1291 (2007).
[CrossRef] [PubMed]

Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
[CrossRef]

Notomi, M.

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

Ozbay, E.

E. Cubukcu, K. Aydin, and E. Ozbay, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Parimi, P. V.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Park, W.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Pendry, J. B.

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Prather, D. W.

Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Murakowski, and D. W. Prather, "Negative refraction imaging in a hybrid photonic-crystal device at near-infrared frequencies," Opt. Express 15, 1286-1291 (2007).
[CrossRef] [PubMed]

Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
[CrossRef]

Qiu, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Sakai, A.

A. Sakai, T. Fukazawa, and T. Baba, "Low loss ultra-small branches in Si photonic wire waveguides," IEICE Trans. Electron. E 85-C, 1033-1038 (2002).

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Schneider, G. J.

Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
[CrossRef]

Schonbrun, E.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Schuetz, C. A.

Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shalaev, V. M.

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shi, S.

Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smolyaninov, I.

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Sridhar, S.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Summers, C. J.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Sun, C.

Swillo, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vodo, P.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Xiong, Y.

Yamashita, T.

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (2006).
[CrossRef]

Zhang, X.

Appl. Phys. Lett. (3)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystal," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Z. Lu, C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a flat cylindrical lens using optimized negative refraction," Appl. Phys. Lett. 87, 091907 (2005).
[CrossRef]

T. Matsumoto, T. Asatsuma, and T. Baba, "Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components," Appl. Phys. Lett. 91, 091117 (2007).
[CrossRef]

E (1)

A. Sakai, T. Fukazawa, and T. Baba, "Low loss ultra-small branches in Si photonic wire waveguides," IEICE Trans. Electron. E 85-C, 1033-1038 (2002).

Jpn. J. Appl. Phys. (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, 646-647 (2004).
[CrossRef]

Nat. Photonics (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007).
[CrossRef]

Nature (1)

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (2006).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

E. Cubukcu, K. Aydin, and E. Ozbay, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (1)

T. Matsumoto and T. Baba, "Position-independent aperture effect of superlens," Spring Meet. Jpn. Soc. Appl. Phys. 29p-YV-5 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Structure and theoretical and experimental characteristics of PC-A. (a) Top view of PC-A. (b) Dispersion surface calculated by the two-dimensional plane-wave expansion method. The dashed line and the arrows show the light line and the directions of the Poynting vector, respectively. (c) Ray tracing for a A/λ=0.30. (d) Light propagation and focal spot profile calculated by the FDTD method for a A/λ=0.30. (e) SEM image of the device, where IWG is the input waveguide. (f) Streak image of the propagating light and focal spot profile at λ=1.355 µm.

Fig. 2.
Fig. 2.

Structure and theoretical and experimental characteristics of the composite PC. (a) Top view of PC-B. (b) Dispersion surface calculated by the two-dimensional plane-wave expansion method. The dashed line and the arrows show the light line and the directions of the Poynting vector, respectively. (c) Ray tracing for a A/λ=0.30. (d) Light propagation and focal spot profile calculated by the FDTD method for a A/λ=0.30. (e) SEM image of the device. (f) Streak image of the propagating light and focal spot profile at λ=1.325 µm.

Fig. 3.
Fig. 3.

Measured wavelength dependence of the focal spot width 2w for PC-A (closed circles) and for the composite PC (open circles).

Fig. 4.
Fig. 4.

SEM image and streak images of light refocusing outside of the PC. (a) Top view of the fabricated device, where OWGs are the output waveguides. (b) Streak images superimposed with white lines denoting the PC and OWGs. The arrows indicate the extracted light.

Fig. 5.
Fig. 5.

Experimental and theoretical results of light refocusing outside of PC-A. (a) Transmittance through the center OWG in the experiment (blue line) and in the FDTD simulation (gray line). The gray region indicates the wavelength range inside the light cone. (b) Ray tracing and FDTD simulation at λ=1.48 µm. In this ray tracing, θ in is limited to ±6.6°. The arrows indicate the input end of the center OWG.

Fig. 6.
Fig. 6.

SEM image of PC-A and demonstration of parallel focusing. (a) Top view of the fabricated device. (b) Streak image of light propagation at λ=1.30 µm. (c) Ray tracing. (d) FDTD simulation of light propagation.

Metrics