Abstract

We report on the behavior of modal polarization states in a single-frequency, ytterbium-doped, few-mode fiber amplifier. Experimental data show that the polarization of the individual transverse modes depends on the pump power and that the modes tend towards orthogonally polarized states with increasing gain. The observations can be explained by local gain saturation that favors the amplification of differently polarized modes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33,1049-1056 (1997).
    [CrossRef]
  2. J. Y. Allain, M. Monerie, and H. Poignant, "Ytterbium-doped fluoride fibre laser operating at 1.02µm," Electron. Lett. 28, 988-989 (1992).
    [CrossRef]
  3. C. Thomy, T. Seefeld, and F. Vollertsen, "High-Power Fibre Lasers Application Potentials for Welding of Steel and Aluminium Sheet Material," Adv. Mater. Res. 6-8, 171-178 (2005).
    [CrossRef]
  4. M. Tröbs, P. Wessels, and C. Fallnich, "Phase-noise properties of an ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna," Opt. Lett. 30, 789-791 (2005).
    [CrossRef] [PubMed]
  5. A. E. Siegmann, "New developments in laser resonators," Proc. SPIE 1224, 2-14 (1990).
    [CrossRef]
  6. N. Andermahr, T. Theeg, and C. Fallnich, "Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers," Appl. Phys. B 91 (to be published).
  7. J. P. Koplow, L. Goldberg, R. P. Moeller, and D. A. V. Kliner, "Polarization-maintaining, double-clad fiber amplifier employing externally applied stress-induced birefringence," Opt. Lett. 25,387-389 (2000).
    [CrossRef]
  8. N. G. Walker and G. R. Walker, "Polarisation control for coherent optical fibre systems," Brit. Tel. Tech. Journal 5, 63-76 (1978).
  9. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, Jr., "Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner," Opt. Lett. 23, 1704-1706 (1998).
    [CrossRef]
  10. E. Hecht, Optics (Addison-Wesley, 1987), pp. 321-323.
  11. T. Rowland, "Spherical Distance," http://mathworld.wolfram.com/SphericalDistance.html.
  12. Z. Jiang and J. R. Marciante, "Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers," J. Opt. Soc. Am. B 25, 247-254 (2008).
    [CrossRef]
  13. AllanW.  Snyder and John D. Love, "Mode coupling," in Optical Waveguide Theory (Kluwer Academic Publishers, 1983), pp. 542-552.

2008

2005

C. Thomy, T. Seefeld, and F. Vollertsen, "High-Power Fibre Lasers Application Potentials for Welding of Steel and Aluminium Sheet Material," Adv. Mater. Res. 6-8, 171-178 (2005).
[CrossRef]

M. Tröbs, P. Wessels, and C. Fallnich, "Phase-noise properties of an ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna," Opt. Lett. 30, 789-791 (2005).
[CrossRef] [PubMed]

2000

1998

1997

R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33,1049-1056 (1997).
[CrossRef]

1992

J. Y. Allain, M. Monerie, and H. Poignant, "Ytterbium-doped fluoride fibre laser operating at 1.02µm," Electron. Lett. 28, 988-989 (1992).
[CrossRef]

1990

A. E. Siegmann, "New developments in laser resonators," Proc. SPIE 1224, 2-14 (1990).
[CrossRef]

1978

N. G. Walker and G. R. Walker, "Polarisation control for coherent optical fibre systems," Brit. Tel. Tech. Journal 5, 63-76 (1978).

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, "Ytterbium-doped fluoride fibre laser operating at 1.02µm," Electron. Lett. 28, 988-989 (1992).
[CrossRef]

Andermahr, N.

N. Andermahr, T. Theeg, and C. Fallnich, "Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers," Appl. Phys. B 91 (to be published).

Byer, R. L.

Fallnich, C.

M. Tröbs, P. Wessels, and C. Fallnich, "Phase-noise properties of an ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna," Opt. Lett. 30, 789-791 (2005).
[CrossRef] [PubMed]

N. Andermahr, T. Theeg, and C. Fallnich, "Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers," Appl. Phys. B 91 (to be published).

Goldberg, L.

Gustafson, E. K.

Hanna, D.C.

R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33,1049-1056 (1997).
[CrossRef]

Jiang, Z.

King, P. J.

Kliner, D. A. V.

Koplow, J. P.

Marciante, J. R.

Moeller, R. P.

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, "Ytterbium-doped fluoride fibre laser operating at 1.02µm," Electron. Lett. 28, 988-989 (1992).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33,1049-1056 (1997).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33,1049-1056 (1997).
[CrossRef]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, "Ytterbium-doped fluoride fibre laser operating at 1.02µm," Electron. Lett. 28, 988-989 (1992).
[CrossRef]

Savage, R. L.

Seefeld, T.

C. Thomy, T. Seefeld, and F. Vollertsen, "High-Power Fibre Lasers Application Potentials for Welding of Steel and Aluminium Sheet Material," Adv. Mater. Res. 6-8, 171-178 (2005).
[CrossRef]

Seel, S. U.

Siegmann, A. E.

A. E. Siegmann, "New developments in laser resonators," Proc. SPIE 1224, 2-14 (1990).
[CrossRef]

Theeg, T.

N. Andermahr, T. Theeg, and C. Fallnich, "Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers," Appl. Phys. B 91 (to be published).

Thomy, C.

C. Thomy, T. Seefeld, and F. Vollertsen, "High-Power Fibre Lasers Application Potentials for Welding of Steel and Aluminium Sheet Material," Adv. Mater. Res. 6-8, 171-178 (2005).
[CrossRef]

Tröbs, M.

Tropper, A.C.

R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33,1049-1056 (1997).
[CrossRef]

Uehara, N.

Vollertsen, F.

C. Thomy, T. Seefeld, and F. Vollertsen, "High-Power Fibre Lasers Application Potentials for Welding of Steel and Aluminium Sheet Material," Adv. Mater. Res. 6-8, 171-178 (2005).
[CrossRef]

Walker, G. R.

N. G. Walker and G. R. Walker, "Polarisation control for coherent optical fibre systems," Brit. Tel. Tech. Journal 5, 63-76 (1978).

Walker, N. G.

N. G. Walker and G. R. Walker, "Polarisation control for coherent optical fibre systems," Brit. Tel. Tech. Journal 5, 63-76 (1978).

Wessels, P.

Willke, B.

Adv. Mater. Res.

C. Thomy, T. Seefeld, and F. Vollertsen, "High-Power Fibre Lasers Application Potentials for Welding of Steel and Aluminium Sheet Material," Adv. Mater. Res. 6-8, 171-178 (2005).
[CrossRef]

Appl. Phys. B

N. Andermahr, T. Theeg, and C. Fallnich, "Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers," Appl. Phys. B 91 (to be published).

Brit. Tel. Tech. Journal

N. G. Walker and G. R. Walker, "Polarisation control for coherent optical fibre systems," Brit. Tel. Tech. Journal 5, 63-76 (1978).

Electron. Lett.

J. Y. Allain, M. Monerie, and H. Poignant, "Ytterbium-doped fluoride fibre laser operating at 1.02µm," Electron. Lett. 28, 988-989 (1992).
[CrossRef]

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A.C. Tropper, and D.C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33,1049-1056 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Proc. SPIE

A. E. Siegmann, "New developments in laser resonators," Proc. SPIE 1224, 2-14 (1990).
[CrossRef]

Other

E. Hecht, Optics (Addison-Wesley, 1987), pp. 321-323.

T. Rowland, "Spherical Distance," http://mathworld.wolfram.com/SphericalDistance.html.

AllanW.  Snyder and John D. Love, "Mode coupling," in Optical Waveguide Theory (Kluwer Academic Publishers, 1983), pp. 542-552.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the fiber amplifier and the mode-selective polarization analysis. NPRO: non-planar ring oscillator, PBS: polarizing beam splitter, MMO: mode matching optics, PD photo detector, PZT: piezo translator, CCD: CCD camera. The arrow symbolizes the positioning stage that was used to shift the fiber incoupling end for definite excitation of HOMs.

Fig. 2.
Fig. 2.

Relative power in the LP 01- and LP11-mode. The dotted lines connect the data points to guide the eye.

Fig. 3.
Fig. 3.

(a) Evolution of the polarization states of the LP 01 and LP11 mode on the Poincaré sphere. LP 01 is on the back side of the sphere. (b) The spherical distance of polarization states on the Poincaré sphere in dependence on the pump power. The dotted lines connect the data points to guide the eye.

Fig. 4.
Fig. 4.

Polarization ellipses of the LP 01 and LP11 mode at pump powers of 0W, 6.3W and 12.3W. The arrows indicate the helicities of the polarization states. At high pump powers both modes are almost orthogonally polarized.

Fig. 5.
Fig. 5.

(a) Calculated intensity distribution relative to the center of the fiber core for the superposition of the modes LP 01 and LP 11 in the case of parallel and orthogonal polarization, (b) the respective transverse gain profiles calculated considering local gain saturation.

Fig. 6.
Fig. 6.

Three mode propagation in the fiber: (a) Relative power in the modes and quadratic fits (solid lines) to guide the eye. (b) Spherical distances of all combinations on the Poincaré sphere in dependence on the pump power. The dotted lines connect the data points to guide the eye.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d ( A , B ) = cos 1 ( S A · S B ) ,
g ( x , y ) = g ss 1 + I ( x , y ) I sat ,

Metrics