Abstract

Through simulations and measurements, we show that in multi-slot thin film waveguides, the TM polarized modes can be confined mostly in the low refractive index layers of the waveguide. The structure consisted of alternating layers of a-Si and SiO2, in the thickness range between 3 and 40 nm, for which the slots were the SiO2 layers. Simulations were performed using the transfer matrix method and experiments using the m-line technique at 1.55 µm. The dependence of the birefringence and of the power confinement in the slots was studied as a function of the waveguide thickness, the Si and SiO2 layer thicknesses, and the SiO2/Si layer thickness ratio. We find a large birefringence—a refractive index difference between TE and TM modes—as large as 0.8. For TM polarized modes, up to ~85% of the total power in the fundamental mode can be confined in the slots.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kik, M. L. Brongersma, and A. Polman, "Strong exciton-erbium coupling in Si nanocrystal-doped SiO2," Appl. Phys. Lett. 76, 2325-2327 (2000).
    [CrossRef]
  2. X. W. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, "Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation," Appl. Phys. Lett. 74, 120-122 (1999).
    [CrossRef]
  3. V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
    [CrossRef]
  4. J. H. Shin, W.-H. Lee, and H.-S. Han, "1.54 ??m Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices," Appl. Phys. Lett. 74, 1573-1575 (1999).
    [CrossRef]
  5. J. Lee, J. H. Shin, and N. Park, "Optical gain at 1.5 ??m in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs," J. Lightwave Technol. 23, 19-25 (2005).
    [CrossRef]
  6. L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
    [CrossRef]
  7. D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).
  8. P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2," J. Lumin. 121, 249-255 (2006).
    [CrossRef]
  9. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear opticalmaterial," Nature (London) 391, 463-466 (1998).
    [CrossRef]
  10. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  11. P. A. Anderson, B. S. Schmidt, and M. Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express 14, 9197-9201 (2006).
    [CrossRef] [PubMed]
  12. N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
    [CrossRef]
  13. R. Sun, P. Dong, N. Feng, C. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at ?? = 1550 nm," Opt. Express 15, 17967-17972 (2007).
    [CrossRef] [PubMed]
  14. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
    [CrossRef]
  15. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004).
    [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  17. L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
    [CrossRef]
  18. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
    [CrossRef] [PubMed]
  19. J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984).
    [CrossRef]
  20. K. Ohta and H. Ishida, "Matrix formalism for calculation of electric field intensity of light in stratified multilayered films," Appl. Opt. 29, 1952-1959 (1990).
    [CrossRef] [PubMed]
  21. R. Ulrich and R. Torge, "Measurement of thin film parameters with a prism coupler," Appl. Opt. 12, 2901-2908 (1973).
    [CrossRef] [PubMed]

2007 (1)

2006 (5)

P. A. Anderson, B. S. Schmidt, and M. Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express 14, 9197-9201 (2006).
[CrossRef] [PubMed]

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
[CrossRef]

P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2," J. Lumin. 121, 249-255 (2006).
[CrossRef]

N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
[CrossRef]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

2005 (1)

2004 (3)

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004).
[CrossRef] [PubMed]

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

2002 (1)

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

2000 (2)

P. G. Kik, M. L. Brongersma, and A. Polman, "Strong exciton-erbium coupling in Si nanocrystal-doped SiO2," Appl. Phys. Lett. 76, 2325-2327 (2000).
[CrossRef]

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

1999 (2)

X. W. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, "Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation," Appl. Phys. Lett. 74, 120-122 (1999).
[CrossRef]

J. H. Shin, W.-H. Lee, and H.-S. Han, "1.54 ??m Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices," Appl. Phys. Lett. 74, 1573-1575 (1999).
[CrossRef]

1998 (2)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear opticalmaterial," Nature (London) 391, 463-466 (1998).
[CrossRef]

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
[CrossRef]

1990 (1)

1984 (1)

1973 (1)

Almeida, V. R.

Anderson, P. A.

Andreani, L. C.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Aoyagi, Y.

X. W. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, "Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation," Appl. Phys. Lett. 74, 120-122 (1999).
[CrossRef]

Barrios, C. A.

Berger, V.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear opticalmaterial," Nature (London) 391, 463-466 (1998).
[CrossRef]

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear opticalmaterial," Nature (London) 391, 463-466 (1998).
[CrossRef]

Brongersma, M. L.

P. G. Kik, M. L. Brongersma, and A. Polman, "Strong exciton-erbium coupling in Si nanocrystal-doped SiO2," Appl. Phys. Lett. 76, 2325-2327 (2000).
[CrossRef]

Canino, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Chilwell, J.

Dal Negro, L.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
[CrossRef]

Daldosso, N.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Diener, J.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

Dong, P.

Duttagupta, S. P.

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
[CrossRef]

Fauchet, P. M.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
[CrossRef]

Feng, N.

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear opticalmaterial," Nature (London) 391, 463-466 (1998).
[CrossRef]

Galli, G.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
[CrossRef]

Galli, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Garcia, C.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Garrido, B.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Gerace, D.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Gourbilleau, F.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Grom, G. F.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

Hamel, S.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
[CrossRef]

Han, H.-S.

J. H. Shin, W.-H. Lee, and H.-S. Han, "1.54 ??m Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices," Appl. Phys. Lett. 74, 1573-1575 (1999).
[CrossRef]

Heitmann, J.

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

Hirschman, K. D.

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
[CrossRef]

Hodgkinson, I.

Hong, C.

Irrera, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Ishida, H.

Isshiki, H.

X. W. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, "Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation," Appl. Phys. Lett. 74, 120-122 (1999).
[CrossRef]

Kamenev, B. V.

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

Kashkarov, P. K.

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

Kik, P. G.

P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2," J. Lumin. 121, 249-255 (2006).
[CrossRef]

P. G. Kik, M. L. Brongersma, and A. Polman, "Strong exciton-erbium coupling in Si nanocrystal-doped SiO2," Appl. Phys. Lett. 76, 2325-2327 (2000).
[CrossRef]

Kimerling, L.

Kimerling, L. C.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
[CrossRef]

N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
[CrossRef]

Koch, F.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

Komuro, S.

X. W. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, "Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation," Appl. Phys. Lett. 74, 120-122 (1999).
[CrossRef]

Kovalev, D.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

Labbe, H. J.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

Lee, J.

Lee, W.-H.

J. H. Shin, W.-H. Lee, and H.-S. Han, "1.54 ??m Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices," Appl. Phys. Lett. 74, 1573-1575 (1999).
[CrossRef]

Lipson, M.

Lisachenko, M. G.

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

Liscidini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Lo Savio, R.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Lockwood, D. J.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
[CrossRef]

McCaffrey, J. P.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
[CrossRef]

Melchiorri, M.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Michel, J.

R. Sun, P. Dong, N. Feng, C. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at ?? = 1550 nm," Opt. Express 15, 17967-17972 (2007).
[CrossRef] [PubMed]

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
[CrossRef]

N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
[CrossRef]

Miritello, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear opticalmaterial," Nature (London) 391, 463-466 (1998).
[CrossRef]

Navarro-Urrios, D.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Ohta, K.

Panepucci, R. R.

Park, N.

Patrini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Pavesi, L.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Pellegrino, P.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Politi, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Polman, A.

P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2," J. Lumin. 121, 249-255 (2006).
[CrossRef]

P. G. Kik, M. L. Brongersma, and A. Polman, "Strong exciton-erbium coupling in Si nanocrystal-doped SiO2," Appl. Phys. Lett. 76, 2325-2327 (2000).
[CrossRef]

Priolo, F.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Pucker, G.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Rizk, R.

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear opticalmaterial," Nature (London) 391, 463-466 (1998).
[CrossRef]

Schmidt, B. S.

Schmidt, M.

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

Shalygina, O. A.

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

Shin, J. H.

J. Lee, J. H. Shin, and N. Park, "Optical gain at 1.5 ??m in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs," J. Lightwave Technol. 23, 19-25 (2005).
[CrossRef]

J. H. Shin, W.-H. Lee, and H.-S. Han, "1.54 ??m Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices," Appl. Phys. Lett. 74, 1573-1575 (1999).
[CrossRef]

Sugano, T.

X. W. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, "Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation," Appl. Phys. Lett. 74, 120-122 (1999).
[CrossRef]

Sun, R.

Timoshenko, V. Y.

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

Torge, R.

Tsybeskov, L.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
[CrossRef]

Ulrich, R.

White, B.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

Williamson, A.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
[CrossRef]

Xu, Q.

Yi, J. H.

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
[CrossRef]

Zacharias, M.

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
[CrossRef]

Zhao, X. W.

X. W. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, "Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation," Appl. Phys. Lett. 74, 120-122 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-oninsulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, "Nanocrystalline-silicon superlattice produced by controlled recrystallization," Appl. Phys. Lett. 72, 43-45 (1998).
[CrossRef]

P. G. Kik, M. L. Brongersma, and A. Polman, "Strong exciton-erbium coupling in Si nanocrystal-doped SiO2," Appl. Phys. Lett. 76, 2325-2327 (2000).
[CrossRef]

X. W. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, "Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation," Appl. Phys. Lett. 74, 120-122 (1999).
[CrossRef]

V. Y. Timoshenko, M. G. Lisachenko, B. V. Kamenev, O. A. Shalygina, P. K. Kashkarov, J. Heitmann, M. Schmidt, and M. Zacharias, "Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures," Appl. Phys. Lett. 84, 2512-2514 (2004).
[CrossRef]

J. H. Shin, W.-H. Lee, and H.-S. Han, "1.54 ??m Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices," Appl. Phys. Lett. 74, 1573-1575 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light-emitting silicon nanocrystals and photonic structures in silicon nitride," IEEE J. Quantum Electron. 12, 1628-1635 (2006).
[CrossRef]

N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
[CrossRef]

J. Appl. Phys. (1)

D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G. Pucker, F. Gourbilleau, and R. Rizk, "Optical losses and gain in silicon-rich silica waveguides containing Er ions," J. Appl. Phys. 91, 534-536 (2002).

J. Lightwave Technol. (1)

J. Lumin. (1)

P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2," J. Lumin. 121, 249-255 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (London) (2)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear opticalmaterial," Nature (London) 391, 463-466 (1998).
[CrossRef]

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, Jr, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature (London) 407, 358-361 (2000).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) SEM of a structure made of alternating a-Si and SiO2 layers. (b) Schematic of sample structure with P periods of LSi thick a-Si and LSiO 2 thick SiO2 layers on a 5-µm thick thermal oxide layer. (c) Sample structure as viewed by the prism coupler for m-line measurement. The multilayer film is replaced by a single film with an effective material index of nFilm and thickness LFilm =P(LSi +L SiO2).

Fig. 2.
Fig. 2.

(a) Schematic of m-line measurement. (b) Graph of reflected light intensity as a function of the modal index for a multilayer film of 34 periods of 15.2-nm a-Si and 19.7-nm SiO2. The arrows show the modal indices greater than 1.44 at which a bound mode is established (2.43, 2.16 and 1.75 for TE; and 1.74 and 1.55 for TM). Modal indices between 1.8 and 1.9 were not measurable because of the two prisms used.

Fig. 3.
Fig. 3.

(a) First and second order modal indices versus SiO2/a-Si layer thickness ratio for both polarizations. The curves represent the calculation for 1.00-µm thick film and the dots represent the measured values for film thicknesses ranging from 0.93 to 1.19 µm. (b) Measured (dots) and calculated (curves) modal index difference between the fundamental TE and TM modes as a function of layer thickness ratio for total film thicknesses between 0.4 and 0.9 µm. The maximum difference of ~0.8 is obtained if the thickness ratio is around 0.5 and 0.6.

Fig. 4.
Fig. 4.

The power profile of the first order TE and TM modes in a 0.60-µm thick film consisting of 10 periods of alternating 30-nm thick a-Si and SiO2 layers. The SiO2 substrate layer is positioned below the 0.0-µm mark and the air above the 0.6-µm mark. The shaded areas represent the SiO2 layers. For TM polarization, the transverse E-field component in the low-index nL region is greater by a factor of nH 2/nL 2 than that in the high-index nH region immediately across the interface.

Fig. 5.
Fig. 5.

(a) The power confinement factor in the SiO2 layers for first order TM mode as a function of layer thickness ratio at various total film thicknesses. (b) The linear relationship between the total film thickness and its optimum layer thickness ratio. The shaded area represents the region where only one TM mode exists.

Metrics