Abstract

We demonstrate low residual timing jitter of 10 GHz pulses from a 1.55 µm optical frequency comb generator based on a doubly-resonant electro-optic modulator. The pulse timing jitter is analyzed, and we illustrate that the pump laser’s linewidth plays a dominant role in the timing jitter. For Fourier frequencies from 1 Hz to 10 MHz, integrated residual timing jitter at 10 GHz was reduced from ~ 94 fs to ~ 8 fs when the pump laser’s linewidth was reduced from ~ 10 MHz to ~ 1 kHz. An electronic servo was used to stabilize the operation point of the comb generator. With the servo, the integrated residual timing jitter was further reduced to ~ 6 fs, and the corresponding residual phase noise power density is -105 dBc/Hz at 1 Hz frequency offset from the 10 GHz pulse carrier.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. I. Gordon and J. D. Rigden, Bell Syst. Tech. J. 42, 155 (1963).
  2. T. Kobayashi and Y. Matsuo, "Single-Frequency Oscillation using two coupled cavities incorporating a Fabry-Pérot Electro-Optics Modulator," Appl. Phys. Lett. 16, 217-218 (1970).
    [CrossRef]
  3. T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition rate optical pulse generator using a Fabry-Perot electro-optical modulator," Appl. Phys. Lett. 21, 341-343 (1972).
    [CrossRef]
  4. M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide-span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron. 29, 2693-2701 (1993).
    [CrossRef]
  5. M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu," Limit of optical-frequency comb generation due to material dispersion," IEEE J. Quantum Electron. 31, 2120-2126 (1995).
    [CrossRef]
  6. K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34, 54-60 (1998).
    [CrossRef]
  7. T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
    [CrossRef]
  8. B. Widiyatmoko, K. Imai, M. Kourogi, and M. Ohtsu, "Second-harmonic generation of an optical frequency comb at 1.55 mm with periodically poled lithium niobate," Opt. Lett. 24, 315-317 (1999).
    [CrossRef]
  9. Y. Bitou, T. R. Schibli, and K. Minoshima, "Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator," Opt. Express 14, 644-654 (2006).
    [CrossRef] [PubMed]
  10. http://www.optocomb.com/eng/products.html Mention of specific trade names is for technical information only, and does not constitute an endorsement by NIST.
  11. G. M. Macfarlane, A. S. Bell, E. Riis, and A. I. Ferguson, "Optical comb generator as an efficient short-pulse source," Opt. Lett. 21, 534-536 (1996).
    [CrossRef] [PubMed]
  12. R. P. Kovaich, U. Sterr, and H. R. Telle, "Short-pulse properties of optical frequency comb generators," Appl. Opt. Lett. 39, 4372-4376 (2000).
    [CrossRef]
  13. M. Kato, K. Fujiura, and T. Kurihara, "Generation of a superstable Lorentzian pulse train with a high repetition frequency based on a Fabry-Pérot resonator integrated with an electro-optic phase modulator," Appl. Opt. Lett. 44, 1263-1269 (2005).
    [CrossRef]
  14. Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
    [CrossRef]
  15. J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
    [CrossRef]
  16. M. Kourogi, T. Enami, and M. Ohtsu, "A coupled-cavity monolithic optical frequency comb generator," IEEE Photon. Technol. Lett. 8, 1698-1700,(1996).
    [CrossRef]
  17. A. S. Bell, G. M. Mcfarlane, E. Riss, and A. I. Ferguson, "An efficient optical frequency comb generator," Opt. Lett. 20, 1435-1439 (1995).
    [CrossRef] [PubMed]
  18. U. Sterr, B. Lipphardt, A. Wolf, and H. R. Telle, "A novel stabilization method for an optical frequency comb generator," IEEE Trans. Instrum. Meas. 48, 574-577 (1999).
    [CrossRef]
  19. A. L. Lance, W. D. Seal, and F. Labaar, "Phase noise and AM noise measurement in the frequency domain," in Infrared and Millimeter Waves, (Academic Press, 1984), Vol. 11, 239-289.
  20. http://www.covega.com Mention of specific trade names is for technical information only, and does not constitute an endorsement by NIST.

2007 (1)

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
[CrossRef]

2006 (1)

2005 (2)

M. Kato, K. Fujiura, and T. Kurihara, "Generation of a superstable Lorentzian pulse train with a high repetition frequency based on a Fabry-Pérot resonator integrated with an electro-optic phase modulator," Appl. Opt. Lett. 44, 1263-1269 (2005).
[CrossRef]

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
[CrossRef]

2000 (1)

R. P. Kovaich, U. Sterr, and H. R. Telle, "Short-pulse properties of optical frequency comb generators," Appl. Opt. Lett. 39, 4372-4376 (2000).
[CrossRef]

1999 (2)

U. Sterr, B. Lipphardt, A. Wolf, and H. R. Telle, "A novel stabilization method for an optical frequency comb generator," IEEE Trans. Instrum. Meas. 48, 574-577 (1999).
[CrossRef]

B. Widiyatmoko, K. Imai, M. Kourogi, and M. Ohtsu, "Second-harmonic generation of an optical frequency comb at 1.55 mm with periodically poled lithium niobate," Opt. Lett. 24, 315-317 (1999).
[CrossRef]

1998 (2)

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34, 54-60 (1998).
[CrossRef]

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
[CrossRef]

1996 (2)

G. M. Macfarlane, A. S. Bell, E. Riis, and A. I. Ferguson, "Optical comb generator as an efficient short-pulse source," Opt. Lett. 21, 534-536 (1996).
[CrossRef] [PubMed]

M. Kourogi, T. Enami, and M. Ohtsu, "A coupled-cavity monolithic optical frequency comb generator," IEEE Photon. Technol. Lett. 8, 1698-1700,(1996).
[CrossRef]

1995 (2)

A. S. Bell, G. M. Mcfarlane, E. Riss, and A. I. Ferguson, "An efficient optical frequency comb generator," Opt. Lett. 20, 1435-1439 (1995).
[CrossRef] [PubMed]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu," Limit of optical-frequency comb generation due to material dispersion," IEEE J. Quantum Electron. 31, 2120-2126 (1995).
[CrossRef]

1993 (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide-span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron. 29, 2693-2701 (1993).
[CrossRef]

1972 (1)

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition rate optical pulse generator using a Fabry-Perot electro-optical modulator," Appl. Phys. Lett. 21, 341-343 (1972).
[CrossRef]

1970 (1)

T. Kobayashi and Y. Matsuo, "Single-Frequency Oscillation using two coupled cavities incorporating a Fabry-Pérot Electro-Optics Modulator," Appl. Phys. Lett. 16, 217-218 (1970).
[CrossRef]

1963 (1)

E. I. Gordon and J. D. Rigden, Bell Syst. Tech. J. 42, 155 (1963).

Bartels, A.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
[CrossRef]

Bell, A. S.

Bitou, Y.

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition rate optical pulse generator using a Fabry-Perot electro-optical modulator," Appl. Phys. Lett. 21, 341-343 (1972).
[CrossRef]

Diddams, S. A.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
[CrossRef]

Enami, T.

M. Kourogi, T. Enami, and M. Ohtsu, "A coupled-cavity monolithic optical frequency comb generator," IEEE Photon. Technol. Lett. 8, 1698-1700,(1996).
[CrossRef]

Ferguson, A. I.

Fujiura, K.

M. Kato, K. Fujiura, and T. Kurihara, "Generation of a superstable Lorentzian pulse train with a high repetition frequency based on a Fabry-Pérot resonator integrated with an electro-optic phase modulator," Appl. Opt. Lett. 44, 1263-1269 (2005).
[CrossRef]

Gordon, E. I.

E. I. Gordon and J. D. Rigden, Bell Syst. Tech. J. 42, 155 (1963).

Hollberg, L.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
[CrossRef]

Huang, C. B.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
[CrossRef]

Imai, K.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
[CrossRef]

B. Widiyatmoko, K. Imai, M. Kourogi, and M. Ohtsu, "Second-harmonic generation of an optical frequency comb at 1.55 mm with periodically poled lithium niobate," Opt. Lett. 24, 315-317 (1999).
[CrossRef]

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34, 54-60 (1998).
[CrossRef]

Ivanov, E. N.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
[CrossRef]

Jiang, Z.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
[CrossRef]

Kato, M.

M. Kato, K. Fujiura, and T. Kurihara, "Generation of a superstable Lorentzian pulse train with a high repetition frequency based on a Fabry-Pérot resonator integrated with an electro-optic phase modulator," Appl. Opt. Lett. 44, 1263-1269 (2005).
[CrossRef]

Kinugawa, S.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
[CrossRef]

Kobayashi, T.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition rate optical pulse generator using a Fabry-Perot electro-optical modulator," Appl. Phys. Lett. 21, 341-343 (1972).
[CrossRef]

T. Kobayashi and Y. Matsuo, "Single-Frequency Oscillation using two coupled cavities incorporating a Fabry-Pérot Electro-Optics Modulator," Appl. Phys. Lett. 16, 217-218 (1970).
[CrossRef]

Kourogi, M.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
[CrossRef]

B. Widiyatmoko, K. Imai, M. Kourogi, and M. Ohtsu, "Second-harmonic generation of an optical frequency comb at 1.55 mm with periodically poled lithium niobate," Opt. Lett. 24, 315-317 (1999).
[CrossRef]

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
[CrossRef]

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34, 54-60 (1998).
[CrossRef]

M. Kourogi, T. Enami, and M. Ohtsu, "A coupled-cavity monolithic optical frequency comb generator," IEEE Photon. Technol. Lett. 8, 1698-1700,(1996).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu," Limit of optical-frequency comb generation due to material dispersion," IEEE J. Quantum Electron. 31, 2120-2126 (1995).
[CrossRef]

M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide-span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron. 29, 2693-2701 (1993).
[CrossRef]

Kovaich, R. P.

R. P. Kovaich, U. Sterr, and H. R. Telle, "Short-pulse properties of optical frequency comb generators," Appl. Opt. Lett. 39, 4372-4376 (2000).
[CrossRef]

Kurihara, T.

M. Kato, K. Fujiura, and T. Kurihara, "Generation of a superstable Lorentzian pulse train with a high repetition frequency based on a Fabry-Pérot resonator integrated with an electro-optic phase modulator," Appl. Opt. Lett. 44, 1263-1269 (2005).
[CrossRef]

Leaird, D.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
[CrossRef]

Lipphardt, B.

U. Sterr, B. Lipphardt, A. Wolf, and H. R. Telle, "A novel stabilization method for an optical frequency comb generator," IEEE Trans. Instrum. Meas. 48, 574-577 (1999).
[CrossRef]

Macfarlane, G. M.

Matsuo, Y.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition rate optical pulse generator using a Fabry-Perot electro-optical modulator," Appl. Phys. Lett. 21, 341-343 (1972).
[CrossRef]

T. Kobayashi and Y. Matsuo, "Single-Frequency Oscillation using two coupled cavities incorporating a Fabry-Pérot Electro-Optics Modulator," Appl. Phys. Lett. 16, 217-218 (1970).
[CrossRef]

Mattori, S.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
[CrossRef]

Mcfarlane, G. M.

McFerran, J. J.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
[CrossRef]

Miao, H.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
[CrossRef]

Minoshima, K.

Miyagi, K.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
[CrossRef]

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide-span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron. 29, 2693-2701 (1993).
[CrossRef]

Oates, C. W.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
[CrossRef]

Ohtsu, M.

B. Widiyatmoko, K. Imai, M. Kourogi, and M. Ohtsu, "Second-harmonic generation of an optical frequency comb at 1.55 mm with periodically poled lithium niobate," Opt. Lett. 24, 315-317 (1999).
[CrossRef]

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
[CrossRef]

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34, 54-60 (1998).
[CrossRef]

M. Kourogi, T. Enami, and M. Ohtsu, "A coupled-cavity monolithic optical frequency comb generator," IEEE Photon. Technol. Lett. 8, 1698-1700,(1996).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu," Limit of optical-frequency comb generation due to material dispersion," IEEE J. Quantum Electron. 31, 2120-2126 (1995).
[CrossRef]

M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide-span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron. 29, 2693-2701 (1993).
[CrossRef]

Rigden, J. D.

E. I. Gordon and J. D. Rigden, Bell Syst. Tech. J. 42, 155 (1963).

Riis, E.

Riss, E.

Saitoh, T.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
[CrossRef]

Schibli, T. R.

Sterr, U.

R. P. Kovaich, U. Sterr, and H. R. Telle, "Short-pulse properties of optical frequency comb generators," Appl. Opt. Lett. 39, 4372-4376 (2000).
[CrossRef]

U. Sterr, B. Lipphardt, A. Wolf, and H. R. Telle, "A novel stabilization method for an optical frequency comb generator," IEEE Trans. Instrum. Meas. 48, 574-577 (1999).
[CrossRef]

Sueta, T.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition rate optical pulse generator using a Fabry-Perot electro-optical modulator," Appl. Phys. Lett. 21, 341-343 (1972).
[CrossRef]

Takeuchi, Y.

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu," Limit of optical-frequency comb generation due to material dispersion," IEEE J. Quantum Electron. 31, 2120-2126 (1995).
[CrossRef]

Taniguchi, A.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
[CrossRef]

Telle, H. R.

R. P. Kovaich, U. Sterr, and H. R. Telle, "Short-pulse properties of optical frequency comb generators," Appl. Opt. Lett. 39, 4372-4376 (2000).
[CrossRef]

U. Sterr, B. Lipphardt, A. Wolf, and H. R. Telle, "A novel stabilization method for an optical frequency comb generator," IEEE Trans. Instrum. Meas. 48, 574-577 (1999).
[CrossRef]

Weiner, A. M.

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
[CrossRef]

Widiyatmoko, B.

Widiyatomoko, B.

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu," Limit of optical-frequency comb generation due to material dispersion," IEEE J. Quantum Electron. 31, 2120-2126 (1995).
[CrossRef]

Wilpers, G.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
[CrossRef]

Wolf, A.

U. Sterr, B. Lipphardt, A. Wolf, and H. R. Telle, "A novel stabilization method for an optical frequency comb generator," IEEE Trans. Instrum. Meas. 48, 574-577 (1999).
[CrossRef]

Appl. Opt. Lett. (2)

R. P. Kovaich, U. Sterr, and H. R. Telle, "Short-pulse properties of optical frequency comb generators," Appl. Opt. Lett. 39, 4372-4376 (2000).
[CrossRef]

M. Kato, K. Fujiura, and T. Kurihara, "Generation of a superstable Lorentzian pulse train with a high repetition frequency based on a Fabry-Pérot resonator integrated with an electro-optic phase modulator," Appl. Opt. Lett. 44, 1263-1269 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

T. Kobayashi and Y. Matsuo, "Single-Frequency Oscillation using two coupled cavities incorporating a Fabry-Pérot Electro-Optics Modulator," Appl. Phys. Lett. 16, 217-218 (1970).
[CrossRef]

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition rate optical pulse generator using a Fabry-Perot electro-optical modulator," Appl. Phys. Lett. 21, 341-343 (1972).
[CrossRef]

Bell Syst. Tech. J. (1)

E. I. Gordon and J. D. Rigden, Bell Syst. Tech. J. 42, 155 (1963).

Electron. Lett. (1)

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2005).
[CrossRef]

IEEE J. Lightwave Technol. (1)

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, "Modulation characteristic of waveguide-type optical frequency comb generator," IEEE J. Lightwave Technol. 16, 824-832 (1998).
[CrossRef]

IEEE J. Quantum Electron. (4)

Z. Jiang, D. Leaird, C. B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, "Spectral line-by-line pulse shaping on an optical frequency comb generator," IEEE J. Quantum Electron. 43, 1163-1174 (2007).
[CrossRef]

M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide-span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron. 29, 2693-2701 (1993).
[CrossRef]

M. Kourogi, B. Widiyatomoko, Y. Takeuchi, and M. Ohtsu," Limit of optical-frequency comb generation due to material dispersion," IEEE J. Quantum Electron. 31, 2120-2126 (1995).
[CrossRef]

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34, 54-60 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Kourogi, T. Enami, and M. Ohtsu, "A coupled-cavity monolithic optical frequency comb generator," IEEE Photon. Technol. Lett. 8, 1698-1700,(1996).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

U. Sterr, B. Lipphardt, A. Wolf, and H. R. Telle, "A novel stabilization method for an optical frequency comb generator," IEEE Trans. Instrum. Meas. 48, 574-577 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (3)

A. L. Lance, W. D. Seal, and F. Labaar, "Phase noise and AM noise measurement in the frequency domain," in Infrared and Millimeter Waves, (Academic Press, 1984), Vol. 11, 239-289.

http://www.covega.com Mention of specific trade names is for technical information only, and does not constitute an endorsement by NIST.

http://www.optocomb.com/eng/products.html Mention of specific trade names is for technical information only, and does not constitute an endorsement by NIST.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic principle of the OFCG: ν o is the optical CW seed frequency, fm is the microwave modulation frequency, R is the power reflectivity of the coatings on the two sides of the waveguide, η describes the propagation loss in the waveguide; i.e., 10×log10(η) is the propagation loss through the OFCG waveguide between two coatings. The time t=0 in output pulse trains is referred to a sinusoidal modulation sin(ωmt).

Fig. 2.
Fig. 2.

Calculated time-averaged power transmission versus the normalized frequency detuning. Φ=0 is assumed. Curves for several different values of β are shown.

Fig. 3.
Fig. 3.

(a). Experimental time-averaged power transmission as a function of the normalized detuning between the cavity and the pump. The blue, green, red and black curves are for different drive RF powers of around 0, 5, 14 and 19 dBm, respectively. (b) Experimental round-trip static phase shift induced by increasing the microwave power applied to the OFCG, presumably due to heating. (c) Experimental time-averaged power transmission vs. frequency detuning for β≈0.72 π (red curve); the reference with β=0 (blue) is also plotted. A, B, C, D and E represent five different frequency detunings. (d) measured spectra (1 nm resolution) at the six operation points.

Fig. 4.
Fig. 4.

(a)–(b) Measured output pulses for different OFCG operation points.

Fig. 5.
Fig. 5.

Experimental setup to measure the residual phase noise of pulses from OFCG. The optical filter is a blocking filter that selects one half comb spectrum corresponding to one fm pulse train. The blocking filter is in the well known reflective Fourier-transform pulse-shaper geometry based on a diffraction grating, and a hard aperture was used to block half the optical spectrum. The variable length fibers were used to match the relative delay. SA: spectrum analyzer. PD is an InGaAs photodiode. MZM: Mach-Zehnder Modulator (Mach-10002 [20]).

Fig. 6.
Fig. 6.

(a). Comb spectrum after the optical filter when the higher-frequency sideband was selected. (b). Measured phase error signal at the mixer IF port as a function of the operating point.

Fig. 7.
Fig. 7.

(a). Measured residual phase-noise PSD SΦ (f) at 10GHz with two different pump lasers. (b) Measured phase-noise PSD with the narrow-linewidth pump laser as well as the servo control system. The gray, orange and green lines indicate mixer noise, spectrum analyzer noise and photodiode shot-noise level, respectively, in our measurement system. The MZM did not add appreciable noise above the mixer noise’s floor.

Tables (1)

Tables Icon

Table 1. Experimental residual phase noise and residual timing jitter for different seed lasers.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E t E i ( x , t , β ) η 1 R 1 R η exp [ i 2 π x i β sin ( 2 π f m t ) ] ,
E t E i ( δ t ) η 1 R ( 1 R η ) + i R η β ω m cos ( ω m t o ) δ t ,
2 π x + β sin ( ω m t o ) = 0 ,
t o = 1 ω m sin 1 ( 2 π x β ) .
τ FWHM = 1 F β f m 1 ( 2 π x β ) 2 .
τ jitter = σ x β f m 1 1 ( 2 π x β ) 2 ,
σ x = ( Δ υ seed FSR ) 2 + ( Δ υ cavity FSR ) 2 + ( ΔΦ 2 π ) 2 ,
P avg P seed = 1 T 0 T E t E i ( δv , t , ϕ ) 2 dt = 2 T 0 T η ( 1 R ) 2 ( 1 R η ) 2 + [ R η β ω m cos ( ω m t o ) ] 2 t 2 d t ,
P avg P seed = ( 1 R ) 2 π R ( 1 R η ) β × 1 ( 2 π x β ) 2 × arctan [ 2 π R η β 1 R η 1 ( 2 π x β ) 2 ] ,
τ rms = 1 2 π f m f = 0 f = f m 2 S φ ( f ) d f ,

Metrics