Abstract

We propose a novel surface-plasmon-resonance sensor design based on coating the holes of a three-hole microstructured optical fiber with a low-index dielectric layer on top of which a gold layer is deposited. The use of all three fiber holes and their relatively large size should facilitate the fabrication of the inclusions and the infiltration of the analyte. Our numerical results indicate that the optical loss of the Gaussian guided mode can be made very small by tuning the thickness of the dielectric layer and that the refractive-index resolution for aqueous analytes is 1×10-4.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
    [CrossRef]
  2. X. Zhang, R. Wang, F. Cox, B. T. Kuhlmey, and M. C. J. Large, "Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers," Opt. Express 15, 16270-16278 (2006).
    [CrossRef]
  3. A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
    [CrossRef]
  4. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006).
    [CrossRef] [PubMed]
  5. A. Hassani and M. Skorobogatiy, "Design of the microstructured optical fiber-based surface plasmon resonance sensor with enhanced microfluidics," Opt. Express 14, 11616-11621 (2006).
    [CrossRef] [PubMed]
  6. A. Hassani and M. Skorobogatiy, "Design criteria for microstructured-optical-fiber-based surface-plasmonresonance sensors," J. Opt. Soc. Am. B 24, 1423-1429 (2007).
    [CrossRef]
  7. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, "Photonic bandgap fiber-based surface plasmon resonance sensors," Opt. Express 15, 11413-11426 (2007).
    [CrossRef] [PubMed]
  8. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft-glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007).
    [CrossRef] [PubMed]
  9. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibers," Opt. Express 15, 17891-17901 (2007).
    [CrossRef]
  10. C. M. B. Cordeiro, M. A. R. Franco, C. J. S. Matos, F. Sircilli, V. A. Serr??ao, and C. H. Brito Cruz, "Single-designparameter microstructured optical fiber for chromatic dispersion tailoring and evanescent field enhancement," Opt. Lett. 32, 3324-3326 (2007).
    [CrossRef] [PubMed]
  11. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. -L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, "Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer," Opt. Lett. 32, 2390-2392 (2007).
    [CrossRef]
  12. http://www.comsol.com/
  13. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, San Diego, Calif., 1998).
  14. H. P. Uranus, "A simple and intuitive procedure for evaluating mode degeneracy in photonic crystal fibers," Am. J. Phys. 74, 211-217 (2006).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, Calif., 2001).
  16. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, "Defect and lattice structure for air-silica index-guiding holey fibers," Opt. Lett. 31, 164-166 (2006).
    [CrossRef] [PubMed]

2007 (7)

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

A. Hassani and M. Skorobogatiy, "Design criteria for microstructured-optical-fiber-based surface-plasmonresonance sensors," J. Opt. Soc. Am. B 24, 1423-1429 (2007).
[CrossRef]

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. -L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, "Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer," Opt. Lett. 32, 2390-2392 (2007).
[CrossRef]

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, "Photonic bandgap fiber-based surface plasmon resonance sensors," Opt. Express 15, 11413-11426 (2007).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, C. J. S. Matos, F. Sircilli, V. A. Serr??ao, and C. H. Brito Cruz, "Single-designparameter microstructured optical fiber for chromatic dispersion tailoring and evanescent field enhancement," Opt. Lett. 32, 3324-3326 (2007).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft-glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007).
[CrossRef] [PubMed]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibers," Opt. Express 15, 17891-17901 (2007).
[CrossRef]

2006 (6)

Amezcua-Correa, A.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Auguste, J. -L.

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Baumberg, J. J.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Blanc, W.

Cordeiro, C. M. B.

Cox, F.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Dewynter, V.

Dussardier, B.

Ebendorff-Heidepriem, H.

Fehri, M. F.

Ferdinand, P.

Finlayson, C. E.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Franco, M. A. R.

Gauvreau, B.

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Hassani, A.

Hayes, J. R.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Hoffmann, P.

Howdle, S. M.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Huy, M. C. P.

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Jung, Y.

Kabashin, A.

Kim, S.

Kirchhof, J.

Kobelke, J.

Kuhlmey, B. T.

Laffont, G.

Large, M. C. J.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Matos, C. J. S.

McPhedran, R. C.

Monro, T. M.

Oh, K.

Pagnoux, D.

Pathmanandavel, K.

Peacock, A. C.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Roy, P.

Ruan, Y.

Sazio, P. J. A.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Schartner, E. P.

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Schuster, K.

Sircilli, F.

Skorobogatiy, M.

Uranus, H. P.

H. P. Uranus, "A simple and intuitive procedure for evaluating mode degeneracy in photonic crystal fibers," Am. J. Phys. 74, 211-217 (2006).
[CrossRef]

Wang, R.

Won, D.-J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Yang, J.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Zhang, X.

Adv. Funct. Mater. (1)

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, "Surface-enhanced Raman scattering using microstructured optical fiber substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Am. J. Phys. (1)

H. P. Uranus, "A simple and intuitive procedure for evaluating mode degeneracy in photonic crystal fibers," Am. J. Phys. 74, 211-217 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (3)

Science (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Other (3)

http://www.comsol.com/

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, San Diego, Calif., 1998).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Cross-section images of a three-hole MOF fabricated at the University of Marie Curie-Sklodowska, Lublin, Poland (printed with permission). (b) Surroundings of the core in the proposed sensor fiber. Parameters s (ns ), c (nc ), and d (nd ) denote the thickness (refractive index) of the auxiliary dielectic layer, the core strut, and the gold layer, respectively. The background refractive index is that of the analyte, na , and r denotes the radius of curvature from point P. (c) Example FEM mesh and boundary conditions.

Fig. 2.
Fig. 2.

(a) Modal loss α as a function of wavelength for different gold layer thicknesses d. (b) Longitudinal component of the time-averaged Poynting vector, 〈S z , on the y-axis. Left inset: cross-sectional view of the mode profile. Right inset: close-up of the norm of the electric field with the vertical lines marking the gold layer location.

Fig. 3.
Fig. 3.

Modal loss as a function of wavelength for two analytes with refractive indices na =1.33 (solid) and na =1.34 (dashed). The curves are plotted for (a) different dielectric layer thicknesses s and (b) different refractive indices nc of the core. In (b), the data for nc =1.47 are magnified by a factor of 20 for clarity.

Fig. 4.
Fig. 4.

Sensitivity parameter for the fibers of Fig. 3(b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

× ε 1 × H = k 0 2 H
H ( x , y , z ; t ) = H ( x , y ) e i ( β z ω t ) .
β = n eff k 0 ,
P = P 0 e α z ,
α = 2 k 0 Im ( n eff ) .
R = Δ n a Δ λ min Δ λ peak 1 × 10 4
S = ( Δ α Δ n a ) α 1.33 .

Metrics