Abstract

Metal-dielectric nanocavities constructed by filling a piece of nonlinear optical material into metal gap waveguides are introduced for realizing optical bistability in nanodomain. Finite-difference time-domain simulation reveal that such a structure can realize optical bistable effect with much weaker operating light power in a nanoscale nonlinear medium. We attribute it to the enhancement of local field intensity and nanoscale confinement of surface plasmon polaritons. Our results verify a feasible way for constructing nanoscale optical logical gates, switches, and all-optical transistors etc. for high density integration of optical circuits.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  2. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
    [CrossRef]
  3. G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
    [CrossRef]
  4. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhoutm, G. Morthier, and R. Baets, "Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13, 9623-9628 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9623.
    [CrossRef]
  5. E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000).
    [CrossRef] [PubMed]
  6. M. G. Banaee, A. R. Cowan, and J. F. Young, "Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals," J. Opt. Soc. Am. B. 19, 2224-2231 (2002).
    [CrossRef]
  7. X. Chen, "Intrinsic optical intersubband bistability and saturation in a quantum well microcavity structure," J. Opt. B: Quantum Semiclass. Opt. 1, 524-528 (1999).
    [CrossRef]
  8. G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in Nonlinear Surface-Plasmon Polaritonic Crystals," Phys. Rev. Lett. 97, 057402 (2006).
    [CrossRef]
  9. A. Husakou and J. Herrmann, "Steplike Transmission of Light through a Metal-Dielectric Multilayer Structure due to an Intensity-Dependent Sign of the Effective Dielectric Constant," Phys. Rev. Lett. 99, 127402 (2007).
    [CrossRef] [PubMed]
  10. C. J. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, "Optical bistability in subwavelength metallic grating coated by nonlinear material," Opt. Express 15, 12368-12373 (2007), http://www.opticsexpress.org/abstract.cfm?uri=OE-15-19-12368.
    [CrossRef] [PubMed]
  11. H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef] [PubMed]
  12. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979).
    [CrossRef] [PubMed]
  13. D. A. B. Miller, "Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity Optimizeion," IEEE J. Quantum Electron. QE- 17, 306-311 (1981).
    [CrossRef]
  14. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
    [CrossRef]
  15. I. P. Kaminow, W. L. Mammel, and H. P. Weber, "Metal-Clad Optical Waveguides: Analytical and Experimental Study," Appl. Opt. 13, 396-405 (1974).
  16. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef] [PubMed]
  17. R. M. Joseph and A. Taflove, "FDTD Maxwell?s Equations Models for Nonlinear Electrodynamics and Optics," IEEE Trans. Antennas Propag. 45, 364-374 (1997).
    [CrossRef]
  18. S. Martellucci and A. N. Chester, Integrated Optics Physics and Applications (Plenum, New York, 1983).
    [CrossRef]
  19. B. Wang and G. Ping Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).
    [CrossRef]
  21. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).
  22. P. Wen, M. Sanchez, M. Gross, and S. Esener, "Observation of bistability in a Vertical-Cavity Semiconductor Optical Amplifier (VCSOA)," Opt. Express 10, 1273-1278 (2002).
    [CrossRef]
  23. J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, "Optical bistability in subwavelength slit apertures containing nonlinear media," Phys. Rev. B 70, 081402(R) (2004).
    [PubMed]

2007 (2)

A. Husakou and J. Herrmann, "Steplike Transmission of Light through a Metal-Dielectric Multilayer Structure due to an Intensity-Dependent Sign of the Effective Dielectric Constant," Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef] [PubMed]

C. J. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, "Optical bistability in subwavelength metallic grating coated by nonlinear material," Opt. Express 15, 12368-12373 (2007), http://www.opticsexpress.org/abstract.cfm?uri=OE-15-19-12368.
[CrossRef] [PubMed]

2006 (2)

H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in Nonlinear Surface-Plasmon Polaritonic Crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

2005 (2)

2004 (1)

B. Wang and G. Ping Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).

2003 (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

2002 (3)

P. Wen, M. Sanchez, M. Gross, and S. Esener, "Observation of bistability in a Vertical-Cavity Semiconductor Optical Amplifier (VCSOA)," Opt. Express 10, 1273-1278 (2002).
[CrossRef]

M. G. Banaee, A. R. Cowan, and J. F. Young, "Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals," J. Opt. Soc. Am. B. 19, 2224-2231 (2002).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

2000 (1)

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000).
[CrossRef] [PubMed]

1999 (1)

X. Chen, "Intrinsic optical intersubband bistability and saturation in a quantum well microcavity structure," J. Opt. B: Quantum Semiclass. Opt. 1, 524-528 (1999).
[CrossRef]

1997 (1)

R. M. Joseph and A. Taflove, "FDTD Maxwell?s Equations Models for Nonlinear Electrodynamics and Optics," IEEE Trans. Antennas Propag. 45, 364-374 (1997).
[CrossRef]

1988 (1)

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

1981 (1)

D. A. B. Miller, "Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity Optimizeion," IEEE J. Quantum Electron. QE- 17, 306-311 (1981).
[CrossRef]

1979 (1)

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979).
[CrossRef] [PubMed]

1974 (1)

Assanto, G.

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

Baets, R.

Banaee, M. G.

M. G. Banaee, A. R. Cowan, and J. F. Young, "Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals," J. Opt. Soc. Am. B. 19, 2224-2231 (2002).
[CrossRef]

Bogaerts, W.

Centeno, E.

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000).
[CrossRef] [PubMed]

Chen, X.

X. Chen, "Intrinsic optical intersubband bistability and saturation in a quantum well microcavity structure," J. Opt. B: Quantum Semiclass. Opt. 1, 524-528 (1999).
[CrossRef]

Cowan, A. R.

M. G. Banaee, A. R. Cowan, and J. F. Young, "Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals," J. Opt. Soc. Am. B. 19, 2224-2231 (2002).
[CrossRef]

Deng, Y.

Dumon, P.

Esener, S.

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

Felbacq, D.

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000).
[CrossRef] [PubMed]

Fink, Y.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Garcia-Vidal, F. J.

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, "Optical bistability in subwavelength slit apertures containing nonlinear media," Phys. Rev. B 70, 081402(R) (2004).
[PubMed]

Garmire, E.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979).
[CrossRef] [PubMed]

Gossard, A. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979).
[CrossRef] [PubMed]

Gross, M.

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

Herrmann, J.

A. Husakou and J. Herrmann, "Steplike Transmission of Light through a Metal-Dielectric Multilayer Structure due to an Intensity-Dependent Sign of the Effective Dielectric Constant," Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef] [PubMed]

Husakou, A.

A. Husakou and J. Herrmann, "Steplike Transmission of Light through a Metal-Dielectric Multilayer Structure due to an Intensity-Dependent Sign of the Effective Dielectric Constant," Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef] [PubMed]

Ibanescu, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Jiao, X. J.

Joannopoulos, J. D.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Johnson, S. G.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Joseph, R. M.

R. M. Joseph and A. Taflove, "FDTD Maxwell?s Equations Models for Nonlinear Electrodynamics and Optics," IEEE Trans. Antennas Propag. 45, 364-374 (1997).
[CrossRef]

Kaminow, I. P.

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

Mammel, W. L.

Maradudin, A. A.

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

Marburger, J. H.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Martin-Moreno, L.

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, "Optical bistability in subwavelength slit apertures containing nonlinear media," Phys. Rev. B 70, 081402(R) (2004).
[PubMed]

McCall, S. L.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979).
[CrossRef] [PubMed]

Miller, D. A. B.

D. A. B. Miller, "Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity Optimizeion," IEEE J. Quantum Electron. QE- 17, 306-311 (1981).
[CrossRef]

Min, C. J.

Ming, H.

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Morthier, G.

Passner, A.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979).
[CrossRef] [PubMed]

Ping Wang, G.

B. Wang and G. Ping Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in Nonlinear Surface-Plasmon Polaritonic Crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Porto, J. A.

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, "Optical bistability in subwavelength slit apertures containing nonlinear media," Phys. Rev. B 70, 081402(R) (2004).
[PubMed]

Priem, G.

Reinisch, R.

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

Sanchez, M.

Seaton, C. T.

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

Soljacic, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

Taflove, A.

R. M. Joseph and A. Taflove, "FDTD Maxwell?s Equations Models for Nonlinear Electrodynamics and Optics," IEEE Trans. Antennas Propag. 45, 364-374 (1997).
[CrossRef]

Van Thourhoutm, D.

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979).
[CrossRef] [PubMed]

Vitrant, G.

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

Vodopyanov, K. L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

Wang, B.

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef] [PubMed]

B. Wang and G. Ping Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).

Wang, G. P.

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef] [PubMed]

Wang, P.

Weber, H. P.

Wen, P.

Wiegmann, W.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979).
[CrossRef] [PubMed]

Winful, H. G.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in Nonlinear Surface-Plasmon Polaritonic Crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Young, J. F.

M. G. Banaee, A. R. Cowan, and J. F. Young, "Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals," J. Opt. Soc. Am. B. 19, 2224-2231 (2002).
[CrossRef]

Zanoni, R.

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

Zayats, A. V.

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in Nonlinear Surface-Plasmon Polaritonic Crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef] [PubMed]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451-453 (1979).
[CrossRef] [PubMed]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch, and G. Vitrant, "Bistability and switching in nonlinear prism coupling," Appl. Phys. Lett. 52, 869-871 (1988).
[CrossRef]

B. Wang and G. Ping Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).

IEEE J. Quantum Electron. QE (1)

D. A. B. Miller, "Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity Optimizeion," IEEE J. Quantum Electron. QE- 17, 306-311 (1981).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

R. M. Joseph and A. Taflove, "FDTD Maxwell?s Equations Models for Nonlinear Electrodynamics and Optics," IEEE Trans. Antennas Propag. 45, 364-374 (1997).
[CrossRef]

J. Appl. Phys. (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003).

J. Opt. B: Quantum Semiclass. Opt. (1)

X. Chen, "Intrinsic optical intersubband bistability and saturation in a quantum well microcavity structure," J. Opt. B: Quantum Semiclass. Opt. 1, 524-528 (1999).
[CrossRef]

J. Opt. Soc. Am. B. (1)

M. G. Banaee, A. R. Cowan, and J. F. Young, "Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals," J. Opt. Soc. Am. B. 19, 2224-2231 (2002).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in Nonlinear Surface-Plasmon Polaritonic Crystals," Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef]

A. Husakou and J. Herrmann, "Steplike Transmission of Light through a Metal-Dielectric Multilayer Structure due to an Intensity-Dependent Sign of the Effective Dielectric Constant," Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Other (5)

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
[CrossRef]

S. Martellucci and A. N. Chester, Integrated Optics Physics and Applications (Plenum, New York, 1983).
[CrossRef]

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, "Optical bistability in subwavelength slit apertures containing nonlinear media," Phys. Rev. B 70, 081402(R) (2004).
[PubMed]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scheme of MGW F-P nanocavities for OB effect.

Fig. 2.
Fig. 2.

Transmission spectra of MGW F-P nanocavities as the |Hz |2 in of the incident light is (a) 1.18 (A/m)2, (b) 4.73×105 (A/m)2, (c) 1.06×106 (A/m)2, respectively.

Fig. 3.
Fig. 3.

Output-input intensity relation of MGW F-P nanocavities as the incident light is with wavelength λ0=(a) 860 nm, (b) 870 nm, (c) 880 nm, (d) 956 nm, (e) 966 nm, and (f) 976 nm, respectively. Inset, magnified view of the hysteresis loop as the incident light is with λ0=976 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T = A 1 1 + F sin 2 ϕ ( I ) ̅ 2
T = B I ̅ I i n
ϕ ( I ̅ ) = 4 π Re ( n e f f 2 ) · L λ 0
n e f f 2 = β s p p 2 ( ε 2 ) k 0
ε 2 = ε 2 ( 0 ) + D d χ ( 3 ) E 2

Metrics