Abstract

A passive ring-assisted Mach-Zehnder interferometer optical interleaver comprising a Y-bench, a 3-dB directional coupler, a ring-resonator, and a delay line is proposed. The interleaver is fabricated with 300 nm×300 nm silicon wires on silicon-on-insulator. The fabricated interleaver demonstrates a flat-top spectral response. The measured free-spectral range is ~4 nm, the insertion loss is ~-8 dB, and the crosstalk is <-10dB. Both the experimental and simulation results are in good agreement.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: Comparisons and Applications Requirements," OFC?? 03 Interleaver Workshop, pp. 1-9, http://www.neophotonics.com/down/2.pdf.
  2. H. Arai, H. Nonen, K. Ohira, and T. Chiba, "PLC wavelength splitter for dense WDM transmission system," Hitachi Cable Review, 21, 11-16 (2002), http://www.hitachi-cable.co.jp/ICSFiles /afieldfile/2005 /11/29/2_review03.pdf.
  3. S. Golmohammadi Heris, A. Zarifkar, K. Abedi, and M. K. Moravej Farshi, "Interleavers/Deinterleavers based on Michelson- Gires-Tournois Interferometers with different structures," Semiconductor Electronics (ICSE2004 Proc. 2004, Kuala Lumpur, Malaysia.) 7-9, 573-576 (2004).
  4. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis - A Signal Processing Approach (New York: Wiley, 1999).
  5. B. B. Dingel and M. Izutsu, "Multifunction optical filter with a Michelson-Gires-Tournois Interferometer for wavelength- division-multiplexed network system application," Opt. Lett. 23, 1099-1101 (1998)
    [CrossRef]
  6. C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
    [CrossRef]
  7. J. Zhang, L. R. Liu, and Y. Zhou "Novel and simple approach for designing lattice form interleaver filter," Opt. Express,  11,2217 (2003), http://www.opticsinfobase.org/DirectPDFAccess/37C11B1D-BDB9-137E-C80DF14F083DCD1B_78792.pdf?da=1&id=78792&seq=0&CFID=33565836&CFTOKEN=48623951
    [CrossRef] [PubMed]
  8. C.-W. Lee, R. B. Wang, P. C. Yeh, and W.-H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14,4636-4643 (2006).
    [CrossRef] [PubMed]
  9. Y. Zhang, Q. J. Wang, and T. C. Soh. "Optical interleaver" US#2005/0271323A1.
  10. Q. J. Wang, Y. Zhang, and Y. C. Soh "Efficient Structure for Optical Interleavers Using Superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
    [CrossRef]
  11. Q. J. Wang, Y. Zhang, and Y. C. Soh " All-Fiber 3?3 Interleaver Design With Flat-Top Passband," IEEE Photon. Technol. Lett. 16,168-170 (2004).
    [CrossRef]
  12. K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13,73-82 (1995).
    [CrossRef]
  13. K. Jinguji, "Synthesis of Coherent Two-Port Optical Delay-Line Circuit with Ring Waveguides," J. Lightwave Technol. 14,1882-1884 (1996).
    [CrossRef]
  14. M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-Width Broadening Design for WDM Filter With Lattice-Form Interleave Filter and Arrayed-Waveguide Gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
    [CrossRef]
  15. S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson "Novel Architecture for Design of Planar Lightwave Interleavers," J. Lightwave Technol. 23, 1435-1440 (2005).
    [CrossRef]
  16. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong. "Proposed Silicon Wire Interleaver Structure," Opt. Express 16, 7849-7859 (2008)
    [CrossRef] [PubMed]
  17. K. Oda, N. Takato, H. Toba, and K. Nosu, "A Wide-Band Guided-Wave Periodic Multi/demultiplexer with a Ring Resonater for Optical FDM Transmission Systems," J. Lightwave Technol. 6, 1016-1023 (1988).
    [CrossRef]
  18. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, "Design and Application of Comact and Highly Tolerant Polatization-Independent Waveguides," J. Lightwave Technol. 25,1276-1283 (2007)
    [CrossRef]
  19. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. H. Hilderink, P. V. Lambeck, and A. Driessen, "Tolerance and application of polarization independent waveguide for communication devices," Proceedings symposium IEEE/LEOS (Benelux chapter, Ghent 2004) 107-110, http://leosbenelux.org/symp04/s04p107.pdf.
  20. Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A High-Performance Ultracompact Optical Interleaver Based on Double-Ring Assisted Mach-Zehnder Interferometer," IEEE Photon. Technol. Lett.,  19,1072-1074 (2007).
    [CrossRef]
  21. F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of ?-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys. 44,5322-5323 (2005).
    [CrossRef]
  22. F. Xia, L. Sekaric, and Y. A. Vlason, "Mode comversion losses in silicon-on-insulator photonic wire dased racetrack resonators," Opt. Express 14,3872-3886 (2006).
    [CrossRef] [PubMed]

2007 (2)

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A High-Performance Ultracompact Optical Interleaver Based on Double-Ring Assisted Mach-Zehnder Interferometer," IEEE Photon. Technol. Lett.,  19,1072-1074 (2007).
[CrossRef]

K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, "Design and Application of Comact and Highly Tolerant Polatization-Independent Waveguides," J. Lightwave Technol. 25,1276-1283 (2007)
[CrossRef]

2006 (2)

2005 (3)

S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson "Novel Architecture for Design of Planar Lightwave Interleavers," J. Lightwave Technol. 23, 1435-1440 (2005).
[CrossRef]

F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of ?-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys. 44,5322-5323 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh "Efficient Structure for Optical Interleavers Using Superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

2004 (1)

Q. J. Wang, Y. Zhang, and Y. C. Soh " All-Fiber 3?3 Interleaver Design With Flat-Top Passband," IEEE Photon. Technol. Lett. 16,168-170 (2004).
[CrossRef]

2003 (2)

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

J. Zhang, L. R. Liu, and Y. Zhou "Novel and simple approach for designing lattice form interleaver filter," Opt. Express,  11,2217 (2003), http://www.opticsinfobase.org/DirectPDFAccess/37C11B1D-BDB9-137E-C80DF14F083DCD1B_78792.pdf?da=1&id=78792&seq=0&CFID=33565836&CFTOKEN=48623951
[CrossRef] [PubMed]

2002 (1)

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-Width Broadening Design for WDM Filter With Lattice-Form Interleave Filter and Arrayed-Waveguide Gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

1998 (1)

1996 (1)

K. Jinguji, "Synthesis of Coherent Two-Port Optical Delay-Line Circuit with Ring Waveguides," J. Lightwave Technol. 14,1882-1884 (1996).
[CrossRef]

1995 (1)

K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13,73-82 (1995).
[CrossRef]

1988 (1)

K. Oda, N. Takato, H. Toba, and K. Nosu, "A Wide-Band Guided-Wave Periodic Multi/demultiplexer with a Ring Resonater for Optical FDM Transmission Systems," J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Baba, T.

F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of ?-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys. 44,5322-5323 (2005).
[CrossRef]

Balakrishnan, A.

Bidnyk, S.

Chang, S. J.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A High-Performance Ultracompact Optical Interleaver Based on Double-Ring Assisted Mach-Zehnder Interferometer," IEEE Photon. Technol. Lett.,  19,1072-1074 (2007).
[CrossRef]

Chen, Y. J.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A High-Performance Ultracompact Optical Interleaver Based on Double-Ring Assisted Mach-Zehnder Interferometer," IEEE Photon. Technol. Lett.,  19,1072-1074 (2007).
[CrossRef]

Cheng, W. H.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Cheng, W.-H.

de Ridder, R. M.

Delâge, A.

Dingel, B. B.

Driessen, A.

Fang, Q.

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong. "Proposed Silicon Wire Interleaver Structure," Opt. Express 16, 7849-7859 (2008)
[CrossRef] [PubMed]

Fukazawa, T.

F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of ?-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys. 44,5322-5323 (2005).
[CrossRef]

Gao, M.

Hibino, Y.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-Width Broadening Design for WDM Filter With Lattice-Form Interleave Filter and Arrayed-Waveguide Gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Himeno, A.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-Width Broadening Design for WDM Filter With Lattice-Form Interleave Filter and Arrayed-Waveguide Gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Hsieh, C. H.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Izutsu, M.

James Wen, Z. Q.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Jinguji, K.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-Width Broadening Design for WDM Filter With Lattice-Form Interleave Filter and Arrayed-Waveguide Gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

K. Jinguji, "Synthesis of Coherent Two-Port Optical Delay-Line Circuit with Ring Waveguides," J. Lightwave Technol. 14,1882-1884 (1996).
[CrossRef]

K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13,73-82 (1995).
[CrossRef]

Kawachi, M.

K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13,73-82 (1995).
[CrossRef]

Kitoh, T.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-Width Broadening Design for WDM Filter With Lattice-Form Interleave Filter and Arrayed-Waveguide Gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Krug, P. A.

Kwong, D. L.

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong. "Proposed Silicon Wire Interleaver Structure," Opt. Express 16, 7849-7859 (2008)
[CrossRef] [PubMed]

Lambeck, P. V.

Lee, C. -W.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Lee, C.-W.

Liu, L. R.

Lo, G. Q.

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong. "Proposed Silicon Wire Interleaver Structure," Opt. Express 16, 7849-7859 (2008)
[CrossRef] [PubMed]

McMichael, I.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Muthukumaran, P.

Ni, C. Y.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A High-Performance Ultracompact Optical Interleaver Based on Double-Ring Assisted Mach-Zehnder Interferometer," IEEE Photon. Technol. Lett.,  19,1072-1074 (2007).
[CrossRef]

Nosu, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, "A Wide-Band Guided-Wave Periodic Multi/demultiplexer with a Ring Resonater for Optical FDM Transmission Systems," J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Oda, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, "A Wide-Band Guided-Wave Periodic Multi/demultiplexer with a Ring Resonater for Optical FDM Transmission Systems," J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Oguma, M.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-Width Broadening Design for WDM Filter With Lattice-Form Interleave Filter and Arrayed-Waveguide Gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Ohno, F.

F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of ?-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys. 44,5322-5323 (2005).
[CrossRef]

Pearson, M.

Roeloffzen, C. G. H.

Sekaric, L.

Shibata, T.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-Width Broadening Design for WDM Filter With Lattice-Form Interleave Filter and Arrayed-Waveguide Gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Soh, Y. C.

Q. J. Wang, Y. Zhang, and Y. C. Soh "Efficient Structure for Optical Interleavers Using Superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh " All-Fiber 3?3 Interleaver Design With Flat-Top Passband," IEEE Photon. Technol. Lett. 16,168-170 (2004).
[CrossRef]

Song, J.

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong. "Proposed Silicon Wire Interleaver Structure," Opt. Express 16, 7849-7859 (2008)
[CrossRef] [PubMed]

Takato, N.

K. Oda, N. Takato, H. Toba, and K. Nosu, "A Wide-Band Guided-Wave Periodic Multi/demultiplexer with a Ring Resonater for Optical FDM Transmission Systems," J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Tao, S. H.

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong. "Proposed Silicon Wire Interleaver Structure," Opt. Express 16, 7849-7859 (2008)
[CrossRef] [PubMed]

Toba, H.

K. Oda, N. Takato, H. Toba, and K. Nosu, "A Wide-Band Guided-Wave Periodic Multi/demultiplexer with a Ring Resonater for Optical FDM Transmission Systems," J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Vlason, Y. A.

Wang, Q. J.

Q. J. Wang, Y. Zhang, and Y. C. Soh "Efficient Structure for Optical Interleavers Using Superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh " All-Fiber 3?3 Interleaver Design With Flat-Top Passband," IEEE Photon. Technol. Lett. 16,168-170 (2004).
[CrossRef]

Wang, R. B.

C.-W. Lee, R. B. Wang, P. C. Yeh, and W.-H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14,4636-4643 (2006).
[CrossRef] [PubMed]

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Wang, Z. P.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A High-Performance Ultracompact Optical Interleaver Based on Double-Ring Assisted Mach-Zehnder Interferometer," IEEE Photon. Technol. Lett.,  19,1072-1074 (2007).
[CrossRef]

Wörhoff, K.

Xia, F.

Yeh, P. C.

C.-W. Lee, R. B. Wang, P. C. Yeh, and W.-H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14,4636-4643 (2006).
[CrossRef] [PubMed]

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Yu, M. B.

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong. "Proposed Silicon Wire Interleaver Structure," Opt. Express 16, 7849-7859 (2008)
[CrossRef] [PubMed]

Zhang, J.

Zhang, Y.

Q. J. Wang, Y. Zhang, and Y. C. Soh "Efficient Structure for Optical Interleavers Using Superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh " All-Fiber 3?3 Interleaver Design With Flat-Top Passband," IEEE Photon. Technol. Lett. 16,168-170 (2004).
[CrossRef]

Zhou, Y.

IEEE Photon. Technol. Lett. (5)

Q. J. Wang, Y. Zhang, and Y. C. Soh "Efficient Structure for Optical Interleavers Using Superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh " All-Fiber 3?3 Interleaver Design With Flat-Top Passband," IEEE Photon. Technol. Lett. 16,168-170 (2004).
[CrossRef]

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-Width Broadening Design for WDM Filter With Lattice-Form Interleave Filter and Arrayed-Waveguide Gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-Top Interleavers Using Two Gires-Tournois Etalons as Phase-Dispersive Mirrors in a Michelson Interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A High-Performance Ultracompact Optical Interleaver Based on Double-Ring Assisted Mach-Zehnder Interferometer," IEEE Photon. Technol. Lett.,  19,1072-1074 (2007).
[CrossRef]

J. Lightwave Technol. (5)

S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson "Novel Architecture for Design of Planar Lightwave Interleavers," J. Lightwave Technol. 23, 1435-1440 (2005).
[CrossRef]

K. Oda, N. Takato, H. Toba, and K. Nosu, "A Wide-Band Guided-Wave Periodic Multi/demultiplexer with a Ring Resonater for Optical FDM Transmission Systems," J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13,73-82 (1995).
[CrossRef]

K. Jinguji, "Synthesis of Coherent Two-Port Optical Delay-Line Circuit with Ring Waveguides," J. Lightwave Technol. 14,1882-1884 (1996).
[CrossRef]

K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, "Design and Application of Comact and Highly Tolerant Polatization-Independent Waveguides," J. Lightwave Technol. 25,1276-1283 (2007)
[CrossRef]

Jpn. J. Appl. Phys. (1)

F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of ?-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys. 44,5322-5323 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (6)

K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. H. Hilderink, P. V. Lambeck, and A. Driessen, "Tolerance and application of polarization independent waveguide for communication devices," Proceedings symposium IEEE/LEOS (Benelux chapter, Ghent 2004) 107-110, http://leosbenelux.org/symp04/s04p107.pdf.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: Comparisons and Applications Requirements," OFC?? 03 Interleaver Workshop, pp. 1-9, http://www.neophotonics.com/down/2.pdf.

H. Arai, H. Nonen, K. Ohira, and T. Chiba, "PLC wavelength splitter for dense WDM transmission system," Hitachi Cable Review, 21, 11-16 (2002), http://www.hitachi-cable.co.jp/ICSFiles /afieldfile/2005 /11/29/2_review03.pdf.

S. Golmohammadi Heris, A. Zarifkar, K. Abedi, and M. K. Moravej Farshi, "Interleavers/Deinterleavers based on Michelson- Gires-Tournois Interferometers with different structures," Semiconductor Electronics (ICSE2004 Proc. 2004, Kuala Lumpur, Malaysia.) 7-9, 573-576 (2004).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis - A Signal Processing Approach (New York: Wiley, 1999).

Y. Zhang, Q. J. Wang, and T. C. Soh. "Optical interleaver" US#2005/0271323A1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the ARMA, which comprises an asymmetric MZI structure with two 3-dB DCs and a ring resonator. (a). An external phase shift π introduced in the ring resonator. (b). An external phase shift π/2 introduced in an arm of the MZI. The yellow regions in (a) and (b) denote the external phase shifts. (c). Schematic of the RA-MZI, which comprises a 1×2 asymmetric MZI structure in which a ring resonator is coupled with an arm of the MZI..

Fig. 2.
Fig. 2.

calculated results of the ARMA and RA-MZI. t=1/3.

Fig. 3.
Fig. 3.

(a). Characteristics of the pass band with different coupling coefficient t. t is from 0.1 to 0.9. (b). Characteristics of related group delay time with different t. (c). Characteristics of the response spectrum with different ν. t=1/3. (d). Characteristics of the response spectrum for 3-dB DC, where η=0.01.

Fig. 4.
Fig. 4.

(a). SEM picture of the RA-MZI. (b). the 3-dBDC, where the coupling length is 11.27µm, and the coupling gap is 300 nm. (c). Optical delay line. The diameter of the bend is 20 µm. (d). the R-R coupled with a waveguide. The coupling gap is ~280 nm. (e). SEM of the SSC, where the tip width is 150 nm, and the length is 200 µm.

Fig. 5.
Fig. 5.

(a). Measured IL for the TE mode of the DC. (b). Measured ILs and their fittings. The blue and the red lines are for Leads A and B, respectively, and the blue and the red dashed lines for the fitting results, respectively. (c). Measured minimum and maximum ILs and the IL for the TE mode in Lead A. (d). Measured minimum and maximum ILs and the IL for the TE mode in Lead B. In (c) and (d), the blue, the green and the red lines denote the minimum ILs, the maximum ILs, and the ILs for the TE modes, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ H ( A ) = 2 2 [ H ( R ) + i exp ( i θ 2 ) ] H ( B ) = 2 2 [ i H ( R ) + exp ( i θ 2 ) ]
ϕ θ = 1 4 + 1 t 2 2 [ 1 2 t cos ( θ ) + t 2 ]

Metrics