Abstract

Compact low-loss polarization independent vertical coupling between a 1.55 µm InGaAsP bulk active waveguide and a passive waveguide based on bimodal interference is presented. Simulation results show low coupling loss (<0.1 dB) over coupler lengths more than 5 times shorter than using the adiabatic design. The concept avoids submicron photolithographic features and shows acceptable fabrication tolerances.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
    [CrossRef]
  2. T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
    [CrossRef]
  3. J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
    [CrossRef]
  4. V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE J. Sel. Top. Quantum Electron. 13, 49-57 (2007).
    [CrossRef]
  5. Y. Suematsu, M. Yamada, and K. Kayashi, "Integrated twin-guide AlGaAs laser with multiheterosctructure," IEEE J. Quantum Electron. QE-11, 457-460 (1975).
    [CrossRef]
  6. V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
    [CrossRef]
  7. S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, and M. Dagenais, "Taper length variation in passive active resonant coupler PARC platform," in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics Optical Society of Ameirca (Whasington, D.C., 1976), paper IThG3.
  8. M. K. Chin and C. W. Lee, "Polarization-independent vertical coupler for photonics integration," Opt. Express 12, 117-123 (2004).
    [CrossRef] [PubMed]
  9. P. V. Studenkov, M. R. Gokhale, and S. R. Forrest, "Efficient coupling in integrated twin-waveguide lasers using waveguide tapers," IEEE Photon. Tecnol. Lett. 11, 1096-1098 (1999).
    [CrossRef]
  10. V. M. Menon, F. Xia, and S. R. Forrest, "Photonic integration using asymmetric twin-waveguide technology: Part II-Devices," IEEE J. Sel. Top. Quantum Electron. 11, 30-42 (2005).
    [CrossRef]
  11. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria," IEE Proc.-J 138, 343-354 (1991).
  12. M. Galarza, K. De Mesel, R. Baets, A. Martinez, C. Aramburu, and M. Lopez-Amo, "Compact spot-size converters with fiber-matched antiresonant reflecting optical eaveguide," Appl. Opt. 42, 4841-4846 (2003).
    [CrossRef] [PubMed]
  13. The European FP6 Network of Excellence ePIXnet: http://www.epixnet.org.
  14. Fimmwave/Fimmprop, Photon Design; http://www.photond.com.
  15. OptiBPM, Optiwave Corporation; http://www.optiwave.com.

2007 (1)

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE J. Sel. Top. Quantum Electron. 13, 49-57 (2007).
[CrossRef]

2006 (1)

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

2005 (1)

V. M. Menon, F. Xia, and S. R. Forrest, "Photonic integration using asymmetric twin-waveguide technology: Part II-Devices," IEEE J. Sel. Top. Quantum Electron. 11, 30-42 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
[CrossRef]

2001 (1)

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

1999 (1)

P. V. Studenkov, M. R. Gokhale, and S. R. Forrest, "Efficient coupling in integrated twin-waveguide lasers using waveguide tapers," IEEE Photon. Tecnol. Lett. 11, 1096-1098 (1999).
[CrossRef]

1997 (1)

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

1975 (1)

Y. Suematsu, M. Yamada, and K. Kayashi, "Integrated twin-guide AlGaAs laser with multiheterosctructure," IEEE J. Quantum Electron. QE-11, 457-460 (1975).
[CrossRef]

Aimez, V.

J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
[CrossRef]

Aramburu, C.

Argawala, S.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

Baets, R.

M. Galarza, K. De Mesel, R. Baets, A. Martinez, C. Aramburu, and M. Lopez-Amo, "Compact spot-size converters with fiber-matched antiresonant reflecting optical eaveguide," Appl. Opt. 42, 4841-4846 (2003).
[CrossRef] [PubMed]

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Bartolo, R. E.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

Binsma, J. J. M.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria," IEE Proc.-J 138, 343-354 (1991).

Blumenthal, D. J.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE J. Sel. Top. Quantum Electron. 13, 49-57 (2007).
[CrossRef]

Buchanan, M.

J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
[CrossRef]

Chin, M. K.

Dagenais, M.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

De Mesel, K.

De Waardt, H.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

Demeester, P.

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Den Besten, J. H.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

Dorren, H. J. S.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

Dubowski, J.

J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
[CrossRef]

Feng, Y.

J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
[CrossRef]

Fish, G.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE J. Sel. Top. Quantum Electron. 13, 49-57 (2007).
[CrossRef]

Forrest, S. R.

V. M. Menon, F. Xia, and S. R. Forrest, "Photonic integration using asymmetric twin-waveguide technology: Part II-Devices," IEEE J. Sel. Top. Quantum Electron. 11, 30-42 (2005).
[CrossRef]

P. V. Studenkov, M. R. Gokhale, and S. R. Forrest, "Efficient coupling in integrated twin-waveguide lasers using waveguide tapers," IEEE Photon. Tecnol. Lett. 11, 1096-1098 (1999).
[CrossRef]

Galarza, M.

M. Galarza, K. De Mesel, R. Baets, A. Martinez, C. Aramburu, and M. Lopez-Amo, "Compact spot-size converters with fiber-matched antiresonant reflecting optical eaveguide," Appl. Opt. 42, 4841-4846 (2003).
[CrossRef] [PubMed]

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Genest, J.

J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
[CrossRef]

Gokhale, M. R.

P. V. Studenkov, M. R. Gokhale, and S. R. Forrest, "Efficient coupling in integrated twin-waveguide lasers using waveguide tapers," IEEE Photon. Tecnol. Lett. 11, 1096-1098 (1999).
[CrossRef]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria," IEE Proc.-J 138, 343-354 (1991).

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria," IEE Proc.-J 138, 343-354 (1991).

Herben, C. G. P.

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Johnson, F. G.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

Kayashi, K.

Y. Suematsu, M. Yamada, and K. Kayashi, "Integrated twin-guide AlGaAs laser with multiheterosctructure," IEEE J. Quantum Electron. QE-11, 457-460 (1975).
[CrossRef]

Khoe, G. D.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria," IEE Proc.-J 138, 343-354 (1991).

Lal, V.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE J. Sel. Top. Quantum Electron. 13, 49-57 (2007).
[CrossRef]

Lee, C. W.

Leijtens, X. J. M.

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Liu, Y.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

Lopez-Amo, M.

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria," IEE Proc.-J 138, 343-354 (1991).

Martinez, A.

Masanovic, M. L.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE J. Sel. Top. Quantum Electron. 13, 49-57 (2007).
[CrossRef]

Menon, V. M.

V. M. Menon, F. Xia, and S. R. Forrest, "Photonic integration using asymmetric twin-waveguide technology: Part II-Devices," IEEE J. Sel. Top. Quantum Electron. 11, 30-42 (2005).
[CrossRef]

Moerman, I.

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Poirier, S.

J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
[CrossRef]

Poole, P.

J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
[CrossRef]

Saini, S. S.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

Smit, M. K.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria," IEE Proc.-J 138, 343-354 (1991).

Stone, D. R.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

Studenkov, P. V.

P. V. Studenkov, M. R. Gokhale, and S. R. Forrest, "Efficient coupling in integrated twin-waveguide lasers using waveguide tapers," IEEE Photon. Tecnol. Lett. 11, 1096-1098 (1999).
[CrossRef]

Suematsu, Y.

Y. Suematsu, M. Yamada, and K. Kayashi, "Integrated twin-guide AlGaAs laser with multiheterosctructure," IEEE J. Quantum Electron. QE-11, 457-460 (1975).
[CrossRef]

Summers, J. A.

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE J. Sel. Top. Quantum Electron. 13, 49-57 (2007).
[CrossRef]

Tangdiongga, E.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

Van Caenegem, T.

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Van Daele, P.

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Van Dongen, T.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

van Geemert, M.

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

Van Thourhout, D.

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Verstuyft, S.

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

Vusirikala, V.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

Whaley, R. D.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

Xia, F.

V. M. Menon, F. Xia, and S. R. Forrest, "Photonic integration using asymmetric twin-waveguide technology: Part II-Devices," IEEE J. Sel. Top. Quantum Electron. 11, 30-42 (2005).
[CrossRef]

Yamada, M.

Y. Suematsu, M. Yamada, and K. Kayashi, "Integrated twin-guide AlGaAs laser with multiheterosctructure," IEEE J. Quantum Electron. QE-11, 457-460 (1975).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

T. Van Caenegem, D. Van Thourhout, M. Galarza, S. Verstuyft, I. Moerman, P. Van Daele, R. Baets, P. Demeester, C. G. P. Herben, X. J. M. Leijtens, and M. K. Smit, "Monolithically integrated multi-wavelength laser by selective area growth with metal organic vapour phase epitaxy," Electron. Lett. 37, 296-298 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Suematsu, M. Yamada, and K. Kayashi, "Integrated twin-guide AlGaAs laser with multiheterosctructure," IEEE J. Quantum Electron. QE-11, 457-460 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Argawala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, "1.55-?m InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth," IEEE J. Sel. Top. Quantum Electron. 3, 1332-1343 (1997).
[CrossRef]

V. Lal, M. L. Masanovic, J. A. Summers, G. Fish, and D. J. Blumenthal, "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE J. Sel. Top. Quantum Electron. 13, 49-57 (2007).
[CrossRef]

V. M. Menon, F. Xia, and S. R. Forrest, "Photonic integration using asymmetric twin-waveguide technology: Part II-Devices," IEEE J. Sel. Top. Quantum Electron. 11, 30-42 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Tangdiongga, Y. Liu, J. H. Den Besten, M. van Geemert, T. Van Dongen, J. J. M. Binsma, H. De Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dorren, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett. 18, 1627-1629 (2006).
[CrossRef]

IEEE Photon. Tecnol. Lett. (1)

P. V. Studenkov, M. R. Gokhale, and S. R. Forrest, "Efficient coupling in integrated twin-waveguide lasers using waveguide tapers," IEEE Photon. Tecnol. Lett. 11, 1096-1098 (1999).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. Dubowski, Y. Feng, P. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, "Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser induced quantum well intermixing," J. Vac. Sci. Technol. A 20, 1426-1429 (2002).
[CrossRef]

Opt. Express (1)

Other (5)

S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, and M. Dagenais, "Taper length variation in passive active resonant coupler PARC platform," in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics Optical Society of Ameirca (Whasington, D.C., 1976), paper IThG3.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria," IEE Proc.-J 138, 343-354 (1991).

The European FP6 Network of Excellence ePIXnet: http://www.epixnet.org.

Fimmwave/Fimmprop, Photon Design; http://www.photond.com.

OptiBPM, Optiwave Corporation; http://www.optiwave.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). In the adiabatic mode transformation concept, the even supermode ψe of the taper is smoothly transformed into the passive mode without loosing any power. (b) In the bimodal interference taper concept the fundamental supermode ψe transfers power to the odd one ψo and the interference between them couples the field in the passive waveguide.

Fig. 2.
Fig. 2.

(a). Schematic drawing of the ATG showing the tapered upper active rib and the underlying passive waveguide. (b) Schematic diagram of the tapering shape of the resonant coupler based on bimodal interference.

Fig. 3.
Fig. 3.

Effective indexes of the coupled waveguide for TE and TM modes at various taper widths.

Fig. 4.
Fig. 4.

Average TE field distribution as a function of the distance for the taper shape shown in (a). (b) Top view or xz cut, (c) lateral view or yz cut. Fimmwave was used for propagation.

Fig. 5.
Fig. 5.

(a). (b) (c) Transversal field distributions for a propagation run. (d), (e), (f) Modal field distributions at points (b) and (c). TE polarization was used in the simulation run. More insight is detailed in the text.

Fig. 6.
Fig. 6.

Comparison of the taper efficiency as a function of length between the resonant coupling and adiabatic approaches.

Fig. 7.
Fig. 7.

Coupler efficiency as a function of width variations for three different separation layer thicknesses d and for both polarizations. Δw=0 represents the polarization independent design, whereas the peaks would be chosen if only one polarization had to be optimized.

Tables (2)

Tables Icon

Table 1. Design parameters for three polarization independent resonant couplers.

Tables Icon

Table 2. Simulation results for the three designs corresponding to different InP separation layer thicknesses d.

Metrics