Abstract

We demonstrate record giant birefringence, nearly twice as large as has previously been achieved (Δn group=1.5 over more than 60 nm of bandwidth near λ=1550 nm) using a multi-slotted silicon nanophotonic waveguide. The birefringence is optimized by the use of materials with high refractive index contrast to create a compact single-mode waveguide, and the etching of deeply sub-wavelength channels within the waveguide, which are strongly coupled in the near field and separated by narrow air channels of optimimum lateral width. When used as a polarization-selective delay element, the delay-bandwidth product per unit length is 46.6/mm over a bandwidth of 8.74 THz. We also design and demonstrate mode shaping of both the TE and TM polarizations to achieve near-identical coupling to a macroscopic external object, such as a lensed fiber or detector.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451 (2000). URL http://www.sciencemag.org/cgi/content/abstract/287/5462/2451
    [CrossRef] [PubMed]
  2. N. Kunzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, "Giant birefringence in anisotropically nanostructured silicon," Opt. Lett. 26, 1265-1267 (2001). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-16-1265
    [CrossRef]
  3. O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006). URL http://link.aip.org/link/?APPLAB/89/233117/1
    [CrossRef]
  4. Q. Xu, V. R. Almeida, R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). URL http://ol.osa.org/abstract.cfm?URI=ol-29-14-1626
    [CrossRef] [PubMed]
  5. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
    [CrossRef]
  6. J. P. Van der Ziel, "Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers," Appl. Phys. Lett. 26, 60-62 (1975). URL http://link.aip.org/link/?APPLAB/26/60/1
    [CrossRef]
  7. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature  391, 463-466 (1998). URL http://dx.doi.org/10.1038/35091
    [CrossRef]
  8. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
    [CrossRef]
  9. T. Fujisawa and M. Koshiba, "Polarization-independent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56-58 (2006). URL http://ol.osa.org/abstract.cfm?URI=ol-31-1-56
    [CrossRef] [PubMed]
  10. G. Leo, G. Assanto, O. Durand, and V. Berger, "Characterization of AlGaAs/AlAs waveguides for optical parametric interactions," J. Opt. Soc. Am. B 19, 902-910 (2002). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-902
    [CrossRef]
  11. A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
    [CrossRef]
  12. F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-24-2457
    [CrossRef] [PubMed]
  13. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243,901 (2007). http://link.aps.org/abstract/PRL/v98/e243901
  14. D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492-494 (1983). URL http://link.aip.org/link/?APPLAB/42/492/1
    [CrossRef]
  15. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-11-1209
    [CrossRef]
  16. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). URL http://link.aip.org/link/?APPLAB/86/081101/1
    [CrossRef] [PubMed]
  17. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
    [CrossRef]
  18. T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers,"J. Opt. Soc. Am. B 23, 684-691 (2006). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-4-684
    [CrossRef] [PubMed]
  19. F. Dell�Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4977
    [CrossRef]
  20. C. A. Barrios, K. B. Gylfason, B . Sanchez, A. Griol,H. Sohlstrom, M. Holgado, and R . Casquel, "Slot-waveguide biochemical sensor," Opt. Lett. 32, 3080-3082 (2007). URL http://ol.osa.org/abstract.cfm?URI=ol-32-21-3080
    [CrossRef] [PubMed]
  21. N. N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
    [CrossRef] [PubMed]
  22. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at ? = 1550 nm," Opt. Express 15, 17967-17972 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-26-17967
    [CrossRef]
  23. C.-Y. Chao, "Simple and effective calculation of modal properties of bent slot waveguides," J. Opt. Soc. Am. B  24, 2373-2377 (2007). URL http://josab.osa.org/abstract.cfm?URI=josab-24-9-2373.
    [CrossRef] [PubMed]
  24. G. Lenz and J. Salzman, "Eigenmodes of multiwaveguide structures," J. Lightwave Technol. 8, 1803-1809 (1990).
    [CrossRef]
  25. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988).
    [CrossRef]
  26. T. Barwicz, C. W. Holzwarth, P. T. Rakich, M. A. Popovic, E. P. Ippen, and H. I. Smith, "Optical loss in silicon microphotonic waveguides induced by metallic contamination," Appl. Phys. Lett. 92, 131108  (2008). URL http://link.aip.org/link/?APL/92/131108/1

2008

T. Barwicz, C. W. Holzwarth, P. T. Rakich, M. A. Popovic, E. P. Ippen, and H. I. Smith, "Optical loss in silicon microphotonic waveguides induced by metallic contamination," Appl. Phys. Lett. 92, 131108  (2008). URL http://link.aip.org/link/?APL/92/131108/1

2007

C.-Y. Chao, "Simple and effective calculation of modal properties of bent slot waveguides," J. Opt. Soc. Am. B  24, 2373-2377 (2007). URL http://josab.osa.org/abstract.cfm?URI=josab-24-9-2373.
[CrossRef] [PubMed]

C. A. Barrios, K. B. Gylfason, B . Sanchez, A. Griol,H. Sohlstrom, M. Holgado, and R . Casquel, "Slot-waveguide biochemical sensor," Opt. Lett. 32, 3080-3082 (2007). URL http://ol.osa.org/abstract.cfm?URI=ol-32-21-3080
[CrossRef] [PubMed]

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at ? = 1550 nm," Opt. Express 15, 17967-17972 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-26-17967
[CrossRef]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243,901 (2007). http://link.aps.org/abstract/PRL/v98/e243901

F. Dell�Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4977
[CrossRef]

2006

T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers,"J. Opt. Soc. Am. B 23, 684-691 (2006). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-4-684
[CrossRef] [PubMed]

T. Fujisawa and M. Koshiba, "Polarization-independent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56-58 (2006). URL http://ol.osa.org/abstract.cfm?URI=ol-31-1-56
[CrossRef] [PubMed]

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006). URL http://link.aip.org/link/?APPLAB/89/233117/1
[CrossRef]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

N. N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
[CrossRef] [PubMed]

2005

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). URL http://link.aip.org/link/?APPLAB/86/081101/1
[CrossRef] [PubMed]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

2004

Q. Xu, V. R. Almeida, R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). URL http://ol.osa.org/abstract.cfm?URI=ol-29-14-1626
[CrossRef] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-11-1209
[CrossRef]

2002

G. Leo, G. Assanto, O. Durand, and V. Berger, "Characterization of AlGaAs/AlAs waveguides for optical parametric interactions," J. Opt. Soc. Am. B 19, 902-910 (2002). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-902
[CrossRef]

2001

2000

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451 (2000). URL http://www.sciencemag.org/cgi/content/abstract/287/5462/2451
[CrossRef] [PubMed]

1998

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature  391, 463-466 (1998). URL http://dx.doi.org/10.1038/35091
[CrossRef]

1996

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
[CrossRef]

1995

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-24-2457
[CrossRef] [PubMed]

1990

G. Lenz and J. Salzman, "Eigenmodes of multiwaveguide structures," J. Lightwave Technol. 8, 1803-1809 (1990).
[CrossRef]

1983

D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492-494 (1983). URL http://link.aip.org/link/?APPLAB/42/492/1
[CrossRef]

1975

J. P. Van der Ziel, "Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers," Appl. Phys. Lett. 26, 60-62 (1975). URL http://link.aip.org/link/?APPLAB/26/60/1
[CrossRef]

Abashin, M.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243,901 (2007). http://link.aps.org/abstract/PRL/v98/e243901

Almeida, V. R.

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-11-1209
[CrossRef]

Q. Xu, V. R. Almeida, R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). URL http://ol.osa.org/abstract.cfm?URI=ol-29-14-1626
[CrossRef] [PubMed]

Andreani, L. C.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Assanto, G.

G. Leo, G. Assanto, O. Durand, and V. Berger, "Characterization of AlGaAs/AlAs waveguides for optical parametric interactions," J. Opt. Soc. Am. B 19, 902-910 (2002). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-902
[CrossRef]

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). URL http://link.aip.org/link/?APPLAB/86/081101/1
[CrossRef] [PubMed]

Bakkers, E. P. A. M.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006). URL http://link.aip.org/link/?APPLAB/89/233117/1
[CrossRef]

Barrios, C. A.

Barwicz, T.

T. Barwicz, C. W. Holzwarth, P. T. Rakich, M. A. Popovic, E. P. Ippen, and H. I. Smith, "Optical loss in silicon microphotonic waveguides induced by metallic contamination," Appl. Phys. Lett. 92, 131108  (2008). URL http://link.aip.org/link/?APL/92/131108/1

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

Berger, V.

G. Leo, G. Assanto, O. Durand, and V. Berger, "Characterization of AlGaAs/AlAs waveguides for optical parametric interactions," J. Opt. Soc. Am. B 19, 902-910 (2002). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-902
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature  391, 463-466 (1998). URL http://dx.doi.org/10.1038/35091
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
[CrossRef]

Borgstrom, M. T.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006). URL http://link.aip.org/link/?APPLAB/89/233117/1
[CrossRef]

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature  391, 463-466 (1998). URL http://dx.doi.org/10.1038/35091
[CrossRef]

Canino, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Casquel, R

Chao, C.-Y.

Cheng, C. C.

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-24-2457
[CrossRef] [PubMed]

Cunningham, J.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243,901 (2007). http://link.aps.org/abstract/PRL/v98/e243901

Dalton, L.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

Dell?Olio, F.

F. Dell�Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4977
[CrossRef]

Diener, J.

Dong, P.

Durand, O.

G. Leo, G. Assanto, O. Durand, and V. Berger, "Characterization of AlGaAs/AlAs waveguides for optical parametric interactions," J. Opt. Soc. Am. B 19, 902-910 (2002). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-902
[CrossRef]

Fainman, Y.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243,901 (2007). http://link.aps.org/abstract/PRL/v98/e243901

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-24-2457
[CrossRef] [PubMed]

Feng, N. N.

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature  391, 463-466 (1998). URL http://dx.doi.org/10.1038/35091
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
[CrossRef]

Flanders, D. C.

D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492-494 (1983). URL http://link.aip.org/link/?APPLAB/42/492/1
[CrossRef]

Fujii, M.

Fujisawa, T.

T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers,"J. Opt. Soc. Am. B 23, 684-691 (2006). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-4-684
[CrossRef] [PubMed]

T. Fujisawa and M. Koshiba, "Polarization-independent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56-58 (2006). URL http://ol.osa.org/abstract.cfm?URI=ol-31-1-56
[CrossRef] [PubMed]

Galli, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Gerace, D.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Gilbert, L. R.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451 (2000). URL http://www.sciencemag.org/cgi/content/abstract/287/5462/2451
[CrossRef] [PubMed]

Griol,, A.

Gross, E.

Gylfason, K. B.

Hochberg, M.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). URL http://link.aip.org/link/?APPLAB/86/081101/1
[CrossRef] [PubMed]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

Holgado, M.

Holzwarth, C. W.

T. Barwicz, C. W. Holzwarth, P. T. Rakich, M. A. Popovic, E. P. Ippen, and H. I. Smith, "Optical loss in silicon microphotonic waveguides induced by metallic contamination," Appl. Phys. Lett. 92, 131108  (2008). URL http://link.aip.org/link/?APL/92/131108/1

Hong, C. Y.

Ikeda, K.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243,901 (2007). http://link.aps.org/abstract/PRL/v98/e243901

Ippen, E. P.

T. Barwicz, C. W. Holzwarth, P. T. Rakich, M. A. Popovic, E. P. Ippen, and H. I. Smith, "Optical loss in silicon microphotonic waveguides induced by metallic contamination," Appl. Phys. Lett. 92, 131108  (2008). URL http://link.aip.org/link/?APL/92/131108/1

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

Irrera, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Jen, A.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

Kimerling, L.

Kimerling, L. C.

N. N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
[CrossRef] [PubMed]

Koch, F.

Koshiba, M.

T. Fujisawa and M. Koshiba, "Polarization-independent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56-58 (2006). URL http://ol.osa.org/abstract.cfm?URI=ol-31-1-56
[CrossRef] [PubMed]

T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers,"J. Opt. Soc. Am. B 23, 684-691 (2006). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-4-684
[CrossRef] [PubMed]

Kovalev, D.

Krishnamoorthy, A.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243,901 (2007). http://link.aps.org/abstract/PRL/v98/e243901

Kunzner, N.

Laurent, N.

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
[CrossRef]

Lawson, R.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

Lenz, G.

G. Lenz and J. Salzman, "Eigenmodes of multiwaveguide structures," J. Lightwave Technol. 8, 1803-1809 (1990).
[CrossRef]

Leo, G.

G. Leo, G. Assanto, O. Durand, and V. Berger, "Characterization of AlGaAs/AlAs waveguides for optical parametric interactions," J. Opt. Soc. Am. B 19, 902-910 (2002). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-902
[CrossRef]

Levy, U.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243,901 (2007). http://link.aps.org/abstract/PRL/v98/e243901

Liao, Y.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

Lipson, M.

Liscidini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Michel, J.

Miritello, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Muskens, O. L.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006). URL http://link.aip.org/link/?APPLAB/89/233117/1
[CrossRef]

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature  391, 463-466 (1998). URL http://dx.doi.org/10.1038/35091
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
[CrossRef]

Nevitt, T. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451 (2000). URL http://www.sciencemag.org/cgi/content/abstract/287/5462/2451
[CrossRef] [PubMed]

Ouderkirk, A. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451 (2000). URL http://www.sciencemag.org/cgi/content/abstract/287/5462/2451
[CrossRef] [PubMed]

Panepucci, R.

Q. Xu, V. R. Almeida, R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). URL http://ol.osa.org/abstract.cfm?URI=ol-29-14-1626
[CrossRef] [PubMed]

Passaro, V. M.

F. Dell�Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4977
[CrossRef]

Patrini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Polisski, G.

Politi, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Popovic, M. A.

T. Barwicz, C. W. Holzwarth, P. T. Rakich, M. A. Popovic, E. P. Ippen, and H. I. Smith, "Optical loss in silicon microphotonic waveguides induced by metallic contamination," Appl. Phys. Lett. 92, 131108  (2008). URL http://link.aip.org/link/?APL/92/131108/1

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

Priolo, F.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Rakich, P. T.

T. Barwicz, C. W. Holzwarth, P. T. Rakich, M. A. Popovic, E. P. Ippen, and H. I. Smith, "Optical loss in silicon microphotonic waveguides induced by metallic contamination," Appl. Phys. Lett. 92, 131108  (2008). URL http://link.aip.org/link/?APL/92/131108/1

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

Rivas, J. G.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006). URL http://link.aip.org/link/?APPLAB/89/233117/1
[CrossRef]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature  391, 463-466 (1998). URL http://dx.doi.org/10.1038/35091
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
[CrossRef]

Salzman, J.

G. Lenz and J. Salzman, "Eigenmodes of multiwaveguide structures," J. Lightwave Technol. 8, 1803-1809 (1990).
[CrossRef]

Sanchez, B

Savio, R. L.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

Scherer, A.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). URL http://link.aip.org/link/?APPLAB/86/081101/1
[CrossRef] [PubMed]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-24-2457
[CrossRef] [PubMed]

Smith, H. I.

T. Barwicz, C. W. Holzwarth, P. T. Rakich, M. A. Popovic, E. P. Ippen, and H. I. Smith, "Optical loss in silicon microphotonic waveguides induced by metallic contamination," Appl. Phys. Lett. 92, 131108  (2008). URL http://link.aip.org/link/?APL/92/131108/1

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

Sohlstrom, H.

Stover, C. A.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451 (2000). URL http://www.sciencemag.org/cgi/content/abstract/287/5462/2451
[CrossRef] [PubMed]

Sullivan, P.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

Sun, P. C.

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-24-2457
[CrossRef] [PubMed]

Sun, R.

Theilmann, S.

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
[CrossRef]

Timoshenko, V. Y.

Tyan, R. C.

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-24-2457
[CrossRef] [PubMed]

Van der Ziel, J. P.

J. P. Van der Ziel, "Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers," Appl. Phys. Lett. 26, 60-62 (1975). URL http://link.aip.org/link/?APPLAB/26/60/1
[CrossRef]

Vodjdani, N.

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
[CrossRef]

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). URL http://link.aip.org/link/?APPLAB/86/081101/1
[CrossRef] [PubMed]

Wang, G.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

Weber, M. F.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451 (2000). URL http://www.sciencemag.org/cgi/content/abstract/287/5462/2451
[CrossRef] [PubMed]

Xu, F.

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-24-2457
[CrossRef] [PubMed]

Xu, Q.

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-11-1209
[CrossRef]

Q. Xu, V. R. Almeida, R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). URL http://ol.osa.org/abstract.cfm?URI=ol-29-14-1626
[CrossRef] [PubMed]

Appl. Phys. Lett.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006). URL http://link.aip.org/link/?APPLAB/89/233117/1
[CrossRef]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett. 89, 241114 (2006). URL http://link.aip.org/link/?APPLAB/89/241114/1
[CrossRef]

J. P. Van der Ziel, "Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers," Appl. Phys. Lett. 26, 60-62 (1975). URL http://link.aip.org/link/?APPLAB/26/60/1
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, and J. Nagle, "Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides," Appl. Phys. Lett. 68, 1320-1322 (1996). URL http://link.aip.org/link/?APPLAB/68/1320/1
[CrossRef]

D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492-494 (1983). URL http://link.aip.org/link/?APPLAB/42/492/1
[CrossRef]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). URL http://link.aip.org/link/?APPLAB/86/081101/1
[CrossRef] [PubMed]

T. Barwicz, C. W. Holzwarth, P. T. Rakich, M. A. Popovic, E. P. Ippen, and H. I. Smith, "Optical loss in silicon microphotonic waveguides induced by metallic contamination," Appl. Phys. Lett. 92, 131108  (2008). URL http://link.aip.org/link/?APL/92/131108/1

IEEE J. Quantum Electron.

N. N. Feng, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol.

G. Lenz and J. Salzman, "Eigenmodes of multiwaveguide structures," J. Lightwave Technol. 8, 1803-1809 (1990).
[CrossRef]

J. Opt. Soc. Am. B

T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers,"J. Opt. Soc. Am. B 23, 684-691 (2006). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-4-684
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Opt. Soc. Am. B

G. Leo, G. Assanto, O. Durand, and V. Berger, "Characterization of AlGaAs/AlAs waveguides for optical parametric interactions," J. Opt. Soc. Am. B 19, 902-910 (2002). URL http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-902
[CrossRef]

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nat. Photonics 1, 57-60 (2007). URL http://dx.doi.org/10.1038/nphoton.2006.41
[CrossRef]

Nature

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature  391, 463-466 (1998). URL http://dx.doi.org/10.1038/35091
[CrossRef]

Opt. Express

F. Dell�Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4977
[CrossRef]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5216
[CrossRef]

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at ? = 1550 nm," Opt. Express 15, 17967-17972 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-26-17967
[CrossRef]

Opt. Lett.

C. A. Barrios, K. B. Gylfason, B . Sanchez, A. Griol,H. Sohlstrom, M. Holgado, and R . Casquel, "Slot-waveguide biochemical sensor," Opt. Lett. 32, 3080-3082 (2007). URL http://ol.osa.org/abstract.cfm?URI=ol-32-21-3080
[CrossRef] [PubMed]

N. Kunzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, "Giant birefringence in anisotropically nanostructured silicon," Opt. Lett. 26, 1265-1267 (2001). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-16-1265
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-11-1209
[CrossRef]

Q. Xu, V. R. Almeida, R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). URL http://ol.osa.org/abstract.cfm?URI=ol-29-14-1626
[CrossRef] [PubMed]

T. Fujisawa and M. Koshiba, "Polarization-independent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56-58 (2006). URL http://ol.osa.org/abstract.cfm?URI=ol-31-1-56
[CrossRef] [PubMed]

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-24-2457
[CrossRef] [PubMed]

Phys. Rev. Lett

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243,901 (2007). http://link.aps.org/abstract/PRL/v98/e243901

Science

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors," Science 287, 2451 (2000). URL http://www.sciencemag.org/cgi/content/abstract/287/5462/2451
[CrossRef] [PubMed]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

a. Schematic of the transverse cross-section of the multi-slotted silicon-on-insulator (SOI) optical waveguide, which consists of five high-index (silicon) ribs of width 150 nm separated by air channels of width 100 nm, which define an air-filling fraction q=0.40. b. The maximum index birefringence (n (TE) eff-n (TM) eff) occurs at q (air-filling fraction)=0.38. The black squares were obtained using a semi-vectorial finite-difference mode-solver software package, assuming a total waveguide width of 1.1 µm. The black line is a bestfit through these data points using a quadratic function [15]. The TM mode is no longer guided for q≥0.43, as its effective index drops below the refractive index of SiO2. c. Plot of n (TE) eff and n (TM) eff for different values of N, the number of silicon ribs. The close agreement with the fitting functions show that supermode theory correctly describes the waveguide, and the nearest-neighbor coupling coefficient can be determined, as discussed in the text. d. Calculation of Δn effn (TE) eff-n (TM) eff showing that Δn eff asymptotes to a constant value for increasing values of N and that N=5, as fabricated, is the smallest value of N for which Δn eff saturates. The group indices n (TE,TM) g behave in the same way.

Fig. 2.
Fig. 2.

a. Scanning electron microscope (SEM) image of a silicon-on-insulator (SOI) chip containing six multi-slot waveguides. (The waveguides complete a 90° bend to the top-right before terminating at the cleaved facet.) Three of the waveguides on the right have 0.4 µm air gaps separating from them from the conventional silicon waveguides, thus creating a Fabry-Perot resonator of length L. b. Magnified SEM image of the multi-slot waveguide, and the TE and TM mode profiles, calculated using a vectorial mode-solver algorithm that takes into account the near-field coupling between the 0.15 µm wide high–index sections separated by 0.10 µm wide air gaps.

Fig. 3.
Fig. 3.

Measurement (labeled ‘expt’) of the group index versus wavelength for the TE and TM polarizations. The simulations (labeled ‘calc’) are performed using a finite-difference photonic simulation software package. Although the latter shows that the higher-order mode TE1 may exist, it is unlikely to be excited by the input due to symmetry considerations, and is not observed at the output, as described in the text.

Fig. 4.
Fig. 4.

Mode profiles from a vectorial finite-difference calculated (dashed blue line) for the a. TE and b. TM polarizations, showing that the modes have very different profiles in the near field [also see Fig. 2(b)]. However, an appropriate optical imaging system can be designed to shape the modes (solid black line) for nearly polarization-independent coupling (see ‘Methods’). The red dots are experimental measurements using such a system, yielding nearly identical shapes for both polarizations, and thereby reducing the polarization dependent loss in coupling from a multi-slotted waveguide to another optical element.

Tables (1)

Tables Icon

Table 1. The multi-slot waveguide confines more TE-polarized light in the high-index regions, and more TM-polarized light in the low-index regions, than the single-slot waveguide. This is the physical reason for the enhanced birefringence of the multi-slot waveguide. Also, in the TE-polarized case, there is less light in the substrate in the multislot case.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c n ( m ) = sin [ π n ( m + 1 ) ( N + 1 ) ] , where n = 1 , 2 , . . . , N ,
n supermode ( m ) = n single w . g . + 2 κ 2 π λ cos ( π ( m + 1 ) N + 1 ) .
τ 0 = λ nm [ 2 log 2 π D ps / nm - km L km v nm / ps ] 1 2 1.8 ps

Metrics