Abstract

Measurements of saturated amplified spontaneous emission-spectra of quantum dot semiconductor optical amplifiers demonstrate efficient replenishment of the quantum-dot ground state population from excited states. This saturation behavior is perfectly modeled by a rate equation model. We examined experimentally the dependence of saturation on the drive current and the saturating optical pump power as well as on the pump wavelength. A coherent noise spectral hole is observed with which we assess dynamical properties and propose optimization of the SOA operating parameters for high speed applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum Dot Photonic Devices for Lightwave Communication,” Appl. Phys. A 80, 1179–1182 (2005).
    [CrossRef]
  2. D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–204 (1997).
    [CrossRef]
  3. D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
    [CrossRef]
  4. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Ultrafast Gain Dynamics in InAs-InGaAs Quantum-Dot Amplifiers,” IEEE Photon. Technol. Lett. 12, 594–596 (2000).
    [CrossRef]
  5. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
    [CrossRef]
  6. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 544–552 (2000).
    [CrossRef]
  7. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
    [CrossRef]
  8. D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
    [CrossRef]
  9. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Moerk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon Technol. Lett. 13, 541–543 (2001).
    [CrossRef]
  10. A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).
    [CrossRef]
  11. A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
    [CrossRef]
  12. T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free semiconductor optical amplifier achieved using quantum dots,” Electron. Lett. 38, 1139–1140 (2002).
    [CrossRef]
  13. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
    [CrossRef]
  14. R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
    [CrossRef]
  15. M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s,” Jpn. J. Appl. Phys. 40, L488–L491 (2001).
    [CrossRef]
  16. S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
    [CrossRef]
  17. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status. Solidi. B 224, 419–423 (2001).
    [CrossRef]
  18. K. Kim, J. Urayama, T. B. Norris, J. Singh, J. Phillips, and P. Bhattacharya, “Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots,” Appl. Phys. Lett. 81, 670–672 (2002).
    [CrossRef]
  19. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
    [CrossRef]
  20. A. Bilenca and G. Eisenstein, “On the Noise Properties of Linear and Nonlinear Quantum-Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).
    [CrossRef]
  21. Y. Nambu, A. Tomita, H. Saito, and K. Nishi, “Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers,” Jpn. J.Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 38, 5087–5095 (1999).
  22. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
    [CrossRef]
  23. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers,” Accepted for publication in IEEE J. Quantum Electron. (2008).
    [CrossRef]
  24. A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous Interaction of Spectral Modes in a Semiconductor Laser,” IEEE J. Quantum Electron. 11, 510–515 (1975).
    [CrossRef]
  25. T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
    [CrossRef]
  26. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B 54, 11532–11538 (1996).
    [CrossRef]
  27. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
    [CrossRef]
  28. D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
    [CrossRef]
  29. K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
    [CrossRef]
  30. M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
    [CrossRef]
  31. M. Shtaif, B. Tromborg, and G. Eisenstein, “Noise spectra of semiconductor optical amplifiers: Relation between semiclassical and quantum descriptions,” IEEE J. Quantum Electron. 34, 869–878 (1998).
    [CrossRef]
  32. M. Shtaif and G. Eisenstein, “Noise properties of nonlinear semiconductor optical amplifiers,” Opt. Lett. 21, 1851–1853 (1996).
    [CrossRef] [PubMed]
  33. A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm,” Opt. Express 16, 2141–2146 (2008).
    [CrossRef] [PubMed]
  34. J. Moerk, M. L. Nielsen, and T. W. Berg, “The Dynamics of Semiconductor Optical Amplifiers - Modeling and Applications,” Opt. Photon. News July, 43–50 (2003).
  35. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008).
    [CrossRef] [PubMed]

2008 (2)

2007 (1)

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

2005 (6)

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum Dot Photonic Devices for Lightwave Communication,” Appl. Phys. A 80, 1179–1182 (2005).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
[CrossRef]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

2004 (5)

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

A. Bilenca and G. Eisenstein, “On the Noise Properties of Linear and Nonlinear Quantum-Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).
[CrossRef]

2003 (2)

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[CrossRef]

2002 (2)

K. Kim, J. Urayama, T. B. Norris, J. Singh, J. Phillips, and P. Bhattacharya, “Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots,” Appl. Phys. Lett. 81, 670–672 (2002).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free semiconductor optical amplifier achieved using quantum dots,” Electron. Lett. 38, 1139–1140 (2002).
[CrossRef]

2001 (4)

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s,” Jpn. J. Appl. Phys. 40, L488–L491 (2001).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status. Solidi. B 224, 419–423 (2001).
[CrossRef]

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Moerk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon Technol. Lett. 13, 541–543 (2001).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

2000 (2)

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Ultrafast Gain Dynamics in InAs-InGaAs Quantum-Dot Amplifiers,” IEEE Photon. Technol. Lett. 12, 594–596 (2000).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 544–552 (2000).
[CrossRef]

1999 (1)

Y. Nambu, A. Tomita, H. Saito, and K. Nishi, “Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers,” Jpn. J.Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 38, 5087–5095 (1999).

1998 (1)

M. Shtaif, B. Tromborg, and G. Eisenstein, “Noise spectra of semiconductor optical amplifiers: Relation between semiclassical and quantum descriptions,” IEEE J. Quantum Electron. 34, 869–878 (1998).
[CrossRef]

1997 (1)

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–204 (1997).
[CrossRef]

1996 (3)

M. Shtaif and G. Eisenstein, “Noise properties of nonlinear semiconductor optical amplifiers,” Opt. Lett. 21, 1851–1853 (1996).
[CrossRef] [PubMed]

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
[CrossRef]

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B 54, 11532–11538 (1996).
[CrossRef]

1995 (1)

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

1975 (1)

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous Interaction of Spectral Modes in a Semiconductor Laser,” IEEE J. Quantum Electron. 11, 510–515 (1975).
[CrossRef]

Akiyama, T.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free semiconductor optical amplifier achieved using quantum dots,” Electron. Lett. 38, 1139–1140 (2002).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s,” Jpn. J. Appl. Phys. 40, L488–L491 (2001).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

Albrecht, M.

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B 54, 11532–11538 (1996).
[CrossRef]

Alferov, Z. I.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–204 (1997).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Alizon, R.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

Arakawa, Y.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B 54, 11532–11538 (1996).
[CrossRef]

Bansropun, S.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

Berg, T. W.

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Moerk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon Technol. Lett. 13, 541–543 (2001).
[CrossRef]

J. Moerk, M. L. Nielsen, and T. W. Berg, “The Dynamics of Semiconductor Optical Amplifiers - Modeling and Applications,” Opt. Photon. News July, 43–50 (2003).

Bhattacharya, P.

K. Kim, J. Urayama, T. B. Norris, J. Singh, J. Phillips, and P. Bhattacharya, “Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots,” Appl. Phys. Lett. 81, 670–672 (2002).
[CrossRef]

Bilenca, A.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

A. Bilenca and G. Eisenstein, “On the Noise Properties of Linear and Nonlinear Quantum-Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).
[CrossRef]

Bimberg, D.

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008).
[CrossRef] [PubMed]

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum Dot Photonic Devices for Lightwave Communication,” Appl. Phys. A 80, 1179–1182 (2005).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
[CrossRef]

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).
[CrossRef]

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status. Solidi. B 224, 419–423 (2001).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 544–552 (2000).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Ultrafast Gain Dynamics in InAs-InGaAs Quantum-Dot Amplifiers,” IEEE Photon. Technol. Lett. 12, 594–596 (2000).
[CrossRef]

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–204 (1997).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers,” Accepted for publication in IEEE J. Quantum Electron. (2008).
[CrossRef]

K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
[CrossRef]

Bischoff, S.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Moerk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon Technol. Lett. 13, 541–543 (2001).
[CrossRef]

Bogatov, A. P.

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous Interaction of Spectral Modes in a Semiconductor Laser,” IEEE J. Quantum Electron. 11, 510–515 (1975).
[CrossRef]

Bonk, R.

Bormann, M.

K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
[CrossRef]

Borri, P.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status. Solidi. B 224, 419–423 (2001).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 544–552 (2000).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Ultrafast Gain Dynamics in InAs-InGaAs Quantum-Dot Amplifiers,” IEEE Photon. Technol. Lett. 12, 594–596 (2000).
[CrossRef]

Calligaro, A.

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

Calligaro, M.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm,” Opt. Express 16, 2141–2146 (2008).
[CrossRef] [PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

Capua, A.

Dery, H.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

Deubert, S.

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

Dommers, S.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free semiconductor optical amplifier achieved using quantum dots,” Electron. Lett. 38, 1139–1140 (2002).
[CrossRef]

Eisenstein, G.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm,” Opt. Express 16, 2141–2146 (2008).
[CrossRef] [PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

A. Bilenca and G. Eisenstein, “On the Noise Properties of Linear and Nonlinear Quantum-Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

M. Shtaif, B. Tromborg, and G. Eisenstein, “Noise spectra of semiconductor optical amplifiers: Relation between semiclassical and quantum descriptions,” IEEE J. Quantum Electron. 34, 869–878 (1998).
[CrossRef]

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
[CrossRef]

M. Shtaif and G. Eisenstein, “Noise properties of nonlinear semiconductor optical amplifiers,” Opt. Lett. 21, 1851–1853 (1996).
[CrossRef] [PubMed]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers,” Accepted for publication in IEEE J. Quantum Electron. (2008).
[CrossRef]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

Eliseev, P. G.

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous Interaction of Spectral Modes in a Semiconductor Laser,” IEEE J. Quantum Electron. 11, 510–515 (1975).
[CrossRef]

Finzi, D.

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

Forchel, A.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm,” Opt. Express 16, 2141–2146 (2008).
[CrossRef] [PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B 54, 11532–11538 (1996).
[CrossRef]

Freude, W.

Gartner, P.

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

Gomis, J.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

Grundmann, M.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Hadass, D.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

Hatori, N.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free semiconductor optical amplifier achieved using quantum dots,” Electron. Lett. 38, 1139–1140 (2002).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s,” Jpn. J. Appl. Phys. 40, L488–L491 (2001).
[CrossRef]

Heinrichsdorff, F.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status. Solidi. B 224, 419–423 (2001).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 544–552 (2000).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Ultrafast Gain Dynamics in InAs-InGaAs Quantum-Dot Amplifiers,” IEEE Photon. Technol. Lett. 12, 594–596 (2000).
[CrossRef]

Heydenreich, J.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Hövel, P.

K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
[CrossRef]

Hvam, J. M.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status. Solidi. B 224, 419–423 (2001).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Ultrafast Gain Dynamics in InAs-InGaAs Quantum-Dot Amplifiers,” IEEE Photon. Technol. Lett. 12, 594–596 (2000).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 544–552 (2000).
[CrossRef]

Ishida, M.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

Ishikawa, H.

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s,” Jpn. J. Appl. Phys. 40, L488–L491 (2001).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

Jahnke, F.

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

Kaiser, W.

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

Kim, J.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers,” Accepted for publication in IEEE J. Quantum Electron. (2008).
[CrossRef]

Kim, K.

K. Kim, J. Urayama, T. B. Norris, J. Singh, J. Phillips, and P. Bhattacharya, “Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots,” Appl. Phys. Lett. 81, 670–672 (2002).
[CrossRef]

Kirstaedter, N.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–204 (1997).
[CrossRef]

Knorr, A.

K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
[CrossRef]

Koos, C.

Kop’ev, P. S.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–204 (1997).
[CrossRef]

Kopev, P. S.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Kovsh, A. R.

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

Krakowski, A.

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

Krakowski, M.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm,” Opt. Express 16, 2141–2146 (2008).
[CrossRef] [PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

Kuntz, M.

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum Dot Photonic Devices for Lightwave Communication,” Appl. Phys. A 80, 1179–1182 (2005).
[CrossRef]

K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
[CrossRef]

Kuramata, A.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

Kuwatsuka, H.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

Laemmlin, M.

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008).
[CrossRef] [PubMed]

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum Dot Photonic Devices for Lightwave Communication,” Appl. Phys. A 80, 1179–1182 (2005).
[CrossRef]

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers,” Accepted for publication in IEEE J. Quantum Electron. (2008).
[CrossRef]

Langbein, W.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status. Solidi. B 224, 419–423 (2001).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 544–552 (2000).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Ultrafast Gain Dynamics in InAs-InGaAs Quantum-Dot Amplifiers,” IEEE Photon. Technol. Lett. 12, 594–596 (2000).
[CrossRef]

Ledentsov, N. N.

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).
[CrossRef]

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–204 (1997).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Leuthold, J.

Livshits, D. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

Lüdge, K.

K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
[CrossRef]

Magnusdottir, I.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Moerk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon Technol. Lett. 13, 541–543 (2001).
[CrossRef]

Maimon, Y.

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

Maleev, N. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

Malic, E.

K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
[CrossRef]

Mao, H.-M.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status. Solidi. B 224, 419–423 (2001).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Ultrafast Gain Dynamics in InAs-InGaAs Quantum-Dot Amplifiers,” IEEE Photon. Technol. Lett. 12, 594–596 (2000).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 544–552 (2000).
[CrossRef]

Martinez-Pastor, J.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

Maximov, M. V.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

Meuer, C.

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008).
[CrossRef] [PubMed]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers,” Accepted for publication in IEEE J. Quantum Electron. (2008).
[CrossRef]

Mikhelashvili, V.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm,” Opt. Express 16, 2141–2146 (2008).
[CrossRef] [PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

Mikhrin, S. S.

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

Moerk, J.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Moerk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon Technol. Lett. 13, 541–543 (2001).
[CrossRef]

J. Moerk, M. L. Nielsen, and T. W. Berg, “The Dynamics of Semiconductor Optical Amplifiers - Modeling and Applications,” Opt. Photon. News July, 43–50 (2003).

Mork, J.

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

Mukai, K.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

Nakata, Y.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free semiconductor optical amplifier achieved using quantum dots,” Electron. Lett. 38, 1139–1140 (2002).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s,” Jpn. J. Appl. Phys. 40, L488–L491 (2001).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

Nambu, Y.

Y. Nambu, A. Tomita, H. Saito, and K. Nishi, “Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers,” Jpn. J.Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 38, 5087–5095 (1999).

Nielsen, M. L.

J. Moerk, M. L. Nielsen, and T. W. Berg, “The Dynamics of Semiconductor Optical Amplifiers - Modeling and Applications,” Opt. Photon. News July, 43–50 (2003).

Nielsen, T. R.

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

Nishi, K.

Y. Nambu, A. Tomita, H. Saito, and K. Nishi, “Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers,” Jpn. J.Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 38, 5087–5095 (1999).

Norris, T. B.

K. Kim, J. Urayama, T. B. Norris, J. Singh, J. Phillips, and P. Bhattacharya, “Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots,” Appl. Phys. Lett. 81, 670–672 (2002).
[CrossRef]

O’Reilly, E. P.

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).
[CrossRef]

Ohnesorge, B.

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B 54, 11532–11538 (1996).
[CrossRef]

Oshinowo, J.

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B 54, 11532–11538 (1996).
[CrossRef]

Otsubo, K.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

Ouyang, D.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
[CrossRef]

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[CrossRef]

Parillaud, O.

Phillips, J.

K. Kim, J. Urayama, T. B. Norris, J. Singh, J. Phillips, and P. Bhattacharya, “Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots,” Appl. Phys. Lett. 81, 670–672 (2002).
[CrossRef]

Reithmaier, J. P.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm,” Opt. Express 16, 2141–2146 (2008).
[CrossRef] [PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

Richter, U.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Ruvimov, S. S.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Saito, H.

Y. Nambu, A. Tomita, H. Saito, and K. Nishi, “Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers,” Jpn. J.Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 38, 5087–5095 (1999).

Schneider, S.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
[CrossRef]

Schöll, E.

K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
[CrossRef]

Schwertberger, R.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

Sellin, R. L.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
[CrossRef]

Semenova, E. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

Shernyakov, Y. M.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

Shtaif, M.

M. Shtaif, B. Tromborg, and G. Eisenstein, “Noise spectra of semiconductor optical amplifiers: Relation between semiclassical and quantum descriptions,” IEEE J. Quantum Electron. 34, 869–878 (1998).
[CrossRef]

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
[CrossRef]

M. Shtaif and G. Eisenstein, “Noise properties of nonlinear semiconductor optical amplifiers,” Opt. Lett. 21, 1851–1853 (1996).
[CrossRef] [PubMed]

Simoyama, T.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

Singh, J.

K. Kim, J. Urayama, T. B. Norris, J. Singh, J. Phillips, and P. Bhattacharya, “Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots,” Appl. Phys. Lett. 81, 670–672 (2002).
[CrossRef]

Somers, A.

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, “Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm,” Opt. Express 16, 2141–2146 (2008).
[CrossRef] [PubMed]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

Sudo, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

Sugawara, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free semiconductor optical amplifier achieved using quantum dots,” Electron. Lett. 38, 1139–1140 (2002).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s,” Jpn. J. Appl. Phys. 40, L488–L491 (2001).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

Sverdlov, B. N.

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous Interaction of Spectral Modes in a Semiconductor Laser,” IEEE J. Quantum Electron. 11, 510–515 (1975).
[CrossRef]

Temnov, V. V.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

Tomita, A.

Y. Nambu, A. Tomita, H. Saito, and K. Nishi, “Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers,” Jpn. J.Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 38, 5087–5095 (1999).

Tromborg, B.

M. Shtaif, B. Tromborg, and G. Eisenstein, “Noise spectra of semiconductor optical amplifiers: Relation between semiclassical and quantum descriptions,” IEEE J. Quantum Electron. 34, 869–878 (1998).
[CrossRef]

Urayama, J.

K. Kim, J. Urayama, T. B. Norris, J. Singh, J. Phillips, and P. Bhattacharya, “Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots,” Appl. Phys. Lett. 81, 670–672 (2002).
[CrossRef]

Uskov, A. V.

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).
[CrossRef]

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

Ustinov, V. M.

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–204 (1997).
[CrossRef]

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Vallaitis, T.

Vasil’ev, A. P.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

Wada, O.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

Werner, P.

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Woggon, U.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
[CrossRef]

Zhukov, A. E.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[CrossRef]

Appl. Phys. A (1)

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum Dot Photonic Devices for Lightwave Communication,” Appl. Phys. A 80, 1179–1182 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10 Gbit/s data,” Appl. Phys. Lett. 87, 021104 (2005).
[CrossRef]

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508 (2007).
[CrossRef]

K. Kim, J. Urayama, T. B. Norris, J. Singh, J. Phillips, and P. Bhattacharya, “Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots,” Appl. Phys. Lett. 81, 670–672 (2002).
[CrossRef]

Electron. Lett. (2)

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free semiconductor optical amplifier achieved using quantum dots,” Electron. Lett. 38, 1139–1140 (2002).
[CrossRef]

R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, A. Calligaro, S. Bansropun, and A. Krakowski, “Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier,” Electron. Lett. 40, 760–761 (2004).
[CrossRef]

IEEE J. Quantum Electron. (6)

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059 (2001).
[CrossRef]

A. Bilenca and G. Eisenstein, “On the Noise Properties of Linear and Nonlinear Quantum-Dot Semiconductor Optical Amplifiers: The Impact of Inhomogeneously Broadened Gain and Fast Carrier Dynamics,” IEEE J. Quantum Electron. 40, 690–702 (2004).
[CrossRef]

A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous Interaction of Spectral Modes in a Semiconductor Laser,” IEEE J. Quantum Electron. 11, 510–515 (1975).
[CrossRef]

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
[CrossRef]

M. Shtaif, B. Tromborg, and G. Eisenstein, “Noise spectra of semiconductor optical amplifiers: Relation between semiclassical and quantum descriptions,” IEEE J. Quantum Electron. 34, 869–878 (1998).
[CrossRef]

A. V. Uskov, T. W. Berg, and J. Mork, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11, 1015–1026 (2005).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 544–552 (2000).
[CrossRef]

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–204 (1997).
[CrossRef]

IEEE Photon Technol. Lett. (1)

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Moerk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon Technol. Lett. 13, 541–543 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Ultrafast Gain Dynamics in InAs-InGaAs Quantum-Dot Amplifiers,” IEEE Photon. Technol. Lett. 12, 594–596 (2000).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

J. of Crystal Growth (1)

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. of Crystal Growth 251, 729–736 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s,” Jpn. J. Appl. Phys. 40, L488–L491 (2001).
[CrossRef]

Jpn. J.Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers (1)

Y. Nambu, A. Tomita, H. Saito, and K. Nishi, “Effects of spectral broadening and cross relaxation on the gain saturation characteristics of quantum dot laser amplifiers,” Jpn. J.Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 38, 5087–5095 (1999).

Opt. Commun. (1)

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

T. R. Nielsen, P. Gartner, and F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004).
[CrossRef]

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B 54, 11532–11538 (1996).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

Phys. Status. Solidi. B (1)

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, H.-M. Mao, and D. Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status. Solidi. B 224, 419–423 (2001).
[CrossRef]

Semicond. Sci. Technol. (1)

D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18, L53–L54 (2003).
[CrossRef]

Thin Solid Films (1)

D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267, 32–36 (1995).
[CrossRef]

Other (3)

K. Lüdge, M. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B to be published (2008).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers,” Accepted for publication in IEEE J. Quantum Electron. (2008).
[CrossRef]

J. Moerk, M. L. Nielsen, and T. W. Berg, “The Dynamics of Semiconductor Optical Amplifiers - Modeling and Applications,” Opt. Photon. News July, 43–50 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic representation of an inhomogeneously broadened QD distribution. Inset: The energy diagram of one QD in an excitonic representation.

Fig. 2.
Fig. 2.

Calculated bias dependent ASE spectra for currents from 10 mA to 350 mA. A shift due to thermal heating which can be observed in Fig. 6 is not included in the calculations.

Fig. 3.
Fig. 3.

Calculated ASE difference for various pump powers. (a) 200 mA bias, (b) 350 mA bias current.

Fig. 4.
Fig. 4.

Pump wavelength dependence of ASE difference. Bias=200 mA, Pump power=4 dBm

Fig. 5.
Fig. 5.

(a) SEM micrograph of the output facet of the QD SOA. The 4µm wide ridge is shown which is deeply etched through the active region (white circle). (b) Schematic of the QD layer. The active region contains 10 layers of InAs QDs embedded in an InGaAs quantum well.

Fig. 6.
Fig. 6.

Measured ASE spectra at various drive currents showing the GS and ES peaks. At 125 mA the maximum ASE intensity is reached. For larger currents the peaks shift due to thermal effects.

Fig. 7.
Fig. 7.

Measured ASE difference for various pump powers from 4 dBm to -11 dBm. (a) 200 mA bias, (b) 350 mA bias

Fig. 8.
Fig. 8.

(a) ASE difference for various pump wavelengths. (b) Zoom of ASE difference near the pump wavelength

Fig. 9.
Fig. 9.

Measured coherent noise spectral hole (a) bias dependence (b) detailed spectra for two bias levels

Fig. 10.
Fig. 10.

Coherent noise spectral hole width and the corresponding QD SOA response time.

Tables (1)

Tables Icon

Table 1: Time constants, transition energies and degeneracies used for modeling.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

dn w dt = I e + j n u , j τ uw , j j n w τ uw G j ( 1 n u , j N U , j ) n w τ r
dn u , j dt = n w τ wu G j ( 1 n u , j N U , j ) n u , j τ uw , j + n e , j τ eu , j ( 1 n u , j N U , j ) n u , j τ ue ( 1 n e , j N E , j )
+ n g , j τ gu , j ( 1 n u , j N U , j ) n u , j τ ug ( 1 n g , j N G , j ) n u , j τ r
dn e , j dt = n u , j τ ue , j ( 1 n e , j N E , j ) n e , j τ eu , j ( 1 n u , j N U , j ) + n g , j τ ge , j ( 1 n e , j N E , j ) n e , j τ eg ( 1 n g , j N G , j )
n e , j τ r L Γ k g jk E P k ћ ω k ( 2 n e , j N E , j 1 )
dn g , j dt = n u , j τ ug ( 1 n g , j N G , j ) n g , j τ gu , j ( 1 n u , j N U , j ) + n e , j τ eg ( 1 n g , j N G , j ) n g , j τ ge , j ( 1 n e , j N E , j )
n g , j τ r L Γ k g jk G P k ћ ω k ( 2 n g , j N G , j 1 )
τ eg = τ ge D g D e exp ( Δ E eg kT )
dP ( ω , z ) dz = [ Γ g ( ω , z ) α ] P ( ω , z )
dP sp ( ω , z ) dz = [ Γ g ( ω , z ) α ] P sp ( ω , z ) + Γ g sp ( ω , z ) P vac ( ω )

Metrics