Abstract

A 3-µm continuous-wave difference-frequency source is directly referenced to a mid-infrared optical frequency comb synthesizer by measuring their beat-note signal by a fast HgCdTe detector. Absolute frequency metrology of molecular vibration spectra is demonstrated by locking the 3-µm coherent radiation to the nearest comb tooth and tuning the comb mode spacing across the Doppler-broadened absorption profile of a CH4 ro-vibrational transition.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. L. Hong, S. Diddams, R. Guo, Z. Y. Bi, A. Onae, H. Inaba, J. Ishikawa, K. Okumura, D. Katsuragi, J. Hirata, T. Shimizu, T. Kurosu, Y. Koga, and H. Matsumoto, "Frequency measurements and hyperfine structure of the R(85)33-0 transition of molecular iodine with a femtosecond optical comb," J. Opt. Soc. Am. B 21, 88-95 (2004).
    [CrossRef]
  2. P. De Natale, P. Cancio, and D. Mazzotti, "Infrared precision spectroscopy using femtosecond-laser-based optical frequency-comb synthesizers," in Femtosecond laser spectroscopy, P. Hannaford ed., (Springer, 2005), pp. 109-132.
  3. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm," Opt. Lett. 32, 307-309 (2007).
    [CrossRef] [PubMed]
  4. J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones, "Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb," J. Opt. Soc. Am. B 24, 2727-2735 (2007).
    [CrossRef]
  5. P. De Natale, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, C. De Mauro, and M. Inguscio, "Extending the optical comb synthesizer to the infrared: from He at 1.083 μm to CO2 at 4.2 μm," in Laser Spectroscopy: Proceedings of the 16th International Conference on Laser Spectroscopy, P. Hannaford, A. Sidorov, H. Bachor, and K. Baldwin eds., (World Scientific Publishing, Singapore, 2004), pp. 63-67.
  6. A. Amy-Klein, H. Vigué, C. Chardonnet, "Absolute frequency measurement of 12C16O2 laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid," J. Mol. Spectrosc. 228, 206-212 (2004).
  7. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, "Frequency-comb-referenced quantum-cascade laser at 4.4 μm," Opt. Lett. 32, 988-990 (2007).
    [CrossRef] [PubMed]
  8. J. H. Sun, B. J. S. Gale and D. T. Reid, "Composite frequency comb spanning 0.4-2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator," Opt. Lett. 32, 1414-1416 (2007).
    [CrossRef] [PubMed]
  9. S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mücke, F. N. C. Wong, E. P. Ippen, and F. X. Kärtner, "Demonstration of a HeNe/CH4-based optical molecular clock," Opt. Lett. 30, 570-572 (2005).
    [CrossRef] [PubMed]
  10. P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, "Mid-infrared fibre-based optical comb," New. J. Phys. 8, 262-269 (2006).
    [CrossRef]
  11. J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov,"Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers," Appl. Phys. Lett. 89, 191115 (2006).
    [CrossRef]
  12. J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, "InAs/AlSb quantum cascade lasers emitting below 3.5 μm," Appl. Phys. Lett. 90, 111118 (2007).
    [CrossRef]
  13. M. Prevedelli, T. Freegarde, and T. W. Hänsch, "Phase locking of. grating-tuned diode lasers," Appl. Phys. B: Lasers Opt. B61, S241-248 (1995)
  14. H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz "Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator," Chem. Phys. Lett. 442, 145-149 (2007)
    [CrossRef]
  15. HITRAN database, http://cfa-www.harvard.edu/HITRAN.
  16. A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, "Room-temperature continuous-wave operation of an external-cavity quantum cascade laser," Opt. Lett. 32, 2792-2794 (2007).
    [CrossRef] [PubMed]
  17. C. Xia, M. Kumar, O.P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, G. Mazé, "Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,"Opt. Lett. 31, 2553-2555 (2006).
    [CrossRef] [PubMed]
  18. C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
    [CrossRef]

2007

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, "InAs/AlSb quantum cascade lasers emitting below 3.5 μm," Appl. Phys. Lett. 90, 111118 (2007).
[CrossRef]

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz "Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator," Chem. Phys. Lett. 442, 145-149 (2007)
[CrossRef]

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm," Opt. Lett. 32, 307-309 (2007).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, "Frequency-comb-referenced quantum-cascade laser at 4.4 μm," Opt. Lett. 32, 988-990 (2007).
[CrossRef] [PubMed]

J. H. Sun, B. J. S. Gale and D. T. Reid, "Composite frequency comb spanning 0.4-2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator," Opt. Lett. 32, 1414-1416 (2007).
[CrossRef] [PubMed]

A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, "Room-temperature continuous-wave operation of an external-cavity quantum cascade laser," Opt. Lett. 32, 2792-2794 (2007).
[CrossRef] [PubMed]

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones, "Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb," J. Opt. Soc. Am. B 24, 2727-2735 (2007).
[CrossRef]

2006

C. Xia, M. Kumar, O.P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, G. Mazé, "Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,"Opt. Lett. 31, 2553-2555 (2006).
[CrossRef] [PubMed]

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, "Mid-infrared fibre-based optical comb," New. J. Phys. 8, 262-269 (2006).
[CrossRef]

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov,"Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers," Appl. Phys. Lett. 89, 191115 (2006).
[CrossRef]

2005

2004

A. Amy-Klein, H. Vigué, C. Chardonnet, "Absolute frequency measurement of 12C16O2 laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid," J. Mol. Spectrosc. 228, 206-212 (2004).

F. L. Hong, S. Diddams, R. Guo, Z. Y. Bi, A. Onae, H. Inaba, J. Ishikawa, K. Okumura, D. Katsuragi, J. Hirata, T. Shimizu, T. Kurosu, Y. Koga, and H. Matsumoto, "Frequency measurements and hyperfine structure of the R(85)33-0 transition of molecular iodine with a femtosecond optical comb," J. Opt. Soc. Am. B 21, 88-95 (2004).
[CrossRef]

1995

M. Prevedelli, T. Freegarde, and T. W. Hänsch, "Phase locking of. grating-tuned diode lasers," Appl. Phys. B: Lasers Opt. B61, S241-248 (1995)

Amy-Klein, A.

A. Amy-Klein, H. Vigué, C. Chardonnet, "Absolute frequency measurement of 12C16O2 laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid," J. Mol. Spectrosc. 228, 206-212 (2004).

Baranov, A. N.

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, "InAs/AlSb quantum cascade lasers emitting below 3.5 μm," Appl. Phys. Lett. 90, 111118 (2007).
[CrossRef]

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov,"Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers," Appl. Phys. Lett. 89, 191115 (2006).
[CrossRef]

Barate, D.

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov,"Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers," Appl. Phys. Lett. 89, 191115 (2006).
[CrossRef]

Bartalini, S.

Bernard, J. E.

Bi, Z. Y.

Blaser, S.

Borri, S.

Cancio, P.

Cathabard, O.

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, "InAs/AlSb quantum cascade lasers emitting below 3.5 μm," Appl. Phys. Lett. 90, 111118 (2007).
[CrossRef]

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov,"Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers," Appl. Phys. Lett. 89, 191115 (2006).
[CrossRef]

Chardonnet, C.

A. Amy-Klein, H. Vigué, C. Chardonnet, "Absolute frequency measurement of 12C16O2 laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid," J. Mol. Spectrosc. 228, 206-212 (2004).

Czajkowski, A.

De Natale, P.

Devenson, J.

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, "InAs/AlSb quantum cascade lasers emitting below 3.5 μm," Appl. Phys. Lett. 90, 111118 (2007).
[CrossRef]

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov,"Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers," Appl. Phys. Lett. 89, 191115 (2006).
[CrossRef]

Diddams, S.

Drissler, S.

Faist, J.

Foreman, S. M.

Freegarde, T.

M. Prevedelli, T. Freegarde, and T. W. Hänsch, "Phase locking of. grating-tuned diode lasers," Appl. Phys. B: Lasers Opt. B61, S241-248 (1995)

Freeman, M. J.

Gagliardi, G.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, "Mid-infrared fibre-based optical comb," New. J. Phys. 8, 262-269 (2006).
[CrossRef]

Gale, B. J. S.

Galli, I.

Gianfrani, L.

Giovannini, M.

Giusfredi, G.

Gubin, M. A.

Guo, R.

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Hänsch, T. W.

M. Prevedelli, T. Freegarde, and T. W. Hänsch, "Phase locking of. grating-tuned diode lasers," Appl. Phys. B: Lasers Opt. B61, S241-248 (1995)

Harren, F. J. M.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz "Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator," Chem. Phys. Lett. 442, 145-149 (2007)
[CrossRef]

Hirata, J.

Hong, F. L.

Hudson, D. D.

Hugi, A.

Inaba, H.

Ippen, E. P.

Ishikawa, J.

Islam, M. N.

Jiang, J.

Jones, D. J.

Kärtner, F. X.

Katsuragi, D.

Koga, Y.

Kulkarni, O.P.

Kumar, M.

Kurosu, T.

Lasri, J.

Leveque, T.

Linnartz, H.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz "Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator," Chem. Phys. Lett. 442, 145-149 (2007)
[CrossRef]

Maddaloni, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, "Mid-infrared fibre-based optical comb," New. J. Phys. 8, 262-269 (2006).
[CrossRef]

Madej, A. A.

Malara, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, "Mid-infrared fibre-based optical comb," New. J. Phys. 8, 262-269 (2006).
[CrossRef]

Marian, A.

Matsumoto, H.

Mazé, G.

Mazzotti, D.

Mohan, A.

Moll, K. D.

Mücke, O. D.

Ngai, A. K. Y.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz "Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator," Chem. Phys. Lett. 442, 145-149 (2007)
[CrossRef]

Okumura, K.

Onae, A.

Persijn, S. T.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz "Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator," Chem. Phys. Lett. 442, 145-149 (2007)
[CrossRef]

Petrukhin, E. A.

Poulain, M.

Prevedelli, M.

M. Prevedelli, T. Freegarde, and T. W. Hänsch, "Phase locking of. grating-tuned diode lasers," Appl. Phys. B: Lasers Opt. B61, S241-248 (1995)

Reid, D. T.

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Shimizu, T.

Sun, J. H.

Teissier, R.

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, "InAs/AlSb quantum cascade lasers emitting below 3.5 μm," Appl. Phys. Lett. 90, 111118 (2007).
[CrossRef]

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov,"Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers," Appl. Phys. Lett. 89, 191115 (2006).
[CrossRef]

Terry, F. L.

Thorpe, M. J.

Verbraak, H.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz "Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator," Chem. Phys. Lett. 442, 145-149 (2007)
[CrossRef]

Vigué, H.

A. Amy-Klein, H. Vigué, C. Chardonnet, "Absolute frequency measurement of 12C16O2 laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid," J. Mol. Spectrosc. 228, 206-212 (2004).

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Wittmann, A.

Wong, F. N. C.

Xia, C.

Ye, J.

Appl. Phys. B: Lasers Opt.

M. Prevedelli, T. Freegarde, and T. W. Hänsch, "Phase locking of. grating-tuned diode lasers," Appl. Phys. B: Lasers Opt. B61, S241-248 (1995)

Appl. Phys. Lett.

J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov,"Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers," Appl. Phys. Lett. 89, 191115 (2006).
[CrossRef]

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, "InAs/AlSb quantum cascade lasers emitting below 3.5 μm," Appl. Phys. Lett. 90, 111118 (2007).
[CrossRef]

Chem. Phys. Lett.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz "Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator," Chem. Phys. Lett. 442, 145-149 (2007)
[CrossRef]

IEEE Photon. Technol. Lett.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

J. Mol. Spectrosc.

A. Amy-Klein, H. Vigué, C. Chardonnet, "Absolute frequency measurement of 12C16O2 laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid," J. Mol. Spectrosc. 228, 206-212 (2004).

J. Opt. Soc. Am. B

New. J. Phys.

P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, "Mid-infrared fibre-based optical comb," New. J. Phys. 8, 262-269 (2006).
[CrossRef]

Opt. Lett.

Other

P. De Natale, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, C. De Mauro, and M. Inguscio, "Extending the optical comb synthesizer to the infrared: from He at 1.083 μm to CO2 at 4.2 μm," in Laser Spectroscopy: Proceedings of the 16th International Conference on Laser Spectroscopy, P. Hannaford, A. Sidorov, H. Bachor, and K. Baldwin eds., (World Scientific Publishing, Singapore, 2004), pp. 63-67.

P. De Natale, P. Cancio, and D. Mazzotti, "Infrared precision spectroscopy using femtosecond-laser-based optical frequency-comb synthesizers," in Femtosecond laser spectroscopy, P. Hannaford ed., (Springer, 2005), pp. 109-132.

HITRAN database, http://cfa-www.harvard.edu/HITRAN.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Layout of the experiment: two simultaneous DFG processes in a PPLN crystal are exploited to produce an OFS and a coherent source at 3 µm. Then, the detected beat-note signal is used to phase-lock the probe radiation directly to the MIR comb, while a second beam is allowed to record molecular spectra with an absolute frequency scale.

Fig. 2.
Fig. 2.

Experimental set-up. First, the DFG pump source at 1-µm is phase-locked to the FC1500 comb. Then, the signal beams are obtained by simultaneous amplification of a cw 1.5-µm laser and the 1.5-µm portion of the NIR OFS. The DFG processes, taking place in the nonlinear crystal, give rise to a comb and a cw source at 3-µm. The IR beat note is used to phase lock the 1.5-µm laser, and therefore the 3-µm probe radiation, to the MIR OFS, while reflection by a CaF2 window is used for gas-cell spectroscopy. The following legend holds: ECDL=external cavity diode laser, G=diffraction grating, M=mirror, HWP=half wave plate, PBS=polarizing beam splitter, P=linear polarizer, D=iris diaphragm, L=lens, PD=InGaAs photo-detector, DM=dichroic mirror, Ge-F=germanium filter, FC=frequency counter, BS=beam splitter, C=fiber collimator, Y=fiber splitter.

Fig. 3.
Fig. 3.

Closed-loop beat-note signal at f 1 beat between the 1-µm laser and the NIR OFS. The servo bumps at 500 kHz due to the slow current loop are clearly visible. The resolution and video bandwidth are respectively RB=3 kHz and VB=30 Hz. The inset shows the same signal for a frequency span of 50 kHz, (RB=300 Hz, VB=30 Hz), indicating that the 1-µm laser linewidth is narrowed down to the NIR comb tooth (about 50 kHz). In this way, the metrological performance of the FC1500 system is transferred to the 3-µm comb.

Fig. 4.
Fig. 4.

Closed-loop beat-note signal as observed by the MCT detector directly at 3 µm (RB=1 kHz, VB=10 Hz). Such signal is simultaneously sent to a frequency counter for measurement of fbeat .

Fig. 5.
Fig. 5.

Absolute measurement of the 3-µm cw source frequency performed using Eq. (2). The integer number M is determined according to the procedure described in the text, while fr , f 1 beat and fbeat at a given time are provided by the frequency counters.

Fig. 6.
Fig. 6.

Recording of the (0000-0010) P(6) CH4 transition in pure gas at 50 mTorr. After phase-locking the 3-µm probe radiation to the MIR comb, its absolute frequency (x axis) is tuned across the molecular resonance by changing the comb mode spacing by discrete steps. This acquisition procedure takes less than one minute. Fitting a Doppler curve to the experimental points provides the line-center absolute frequency with a relative uncertainty of 2·10-8 (88679120±2 MHz).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f DFG comb f 1 f NIR comb = ( N 1 n ) f r + f beat 1 m · f r + f beat 1
f DFG cw = M f r + f beat 1 + f beat ,

Metrics