Abstract

Photo-induced voltage due to photon drag effect is investigated for metallic photonic crystal slabs (PCS) with symmetric and asymmetric unit cells. In the symmetric structure, the signal is antisymmetric as a function of the incident angle, while in the asymmetric structure it is asymmetric. When the laser beam is normally incident to the sample, the photovoltage is observed only for PCS with asymmetric unit cells and its laser wavelength dependence is readily described in terms of uneven diffraction. The phenomenon can be referred to as optical rectification due to photonic scale asymmetry.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984,) p.86.
  2. T. Ishihara, K. Koshino, and H. Nakashima, "Second Harmonic Generation due to Quadrupole Interaction in a Photonic Crystal Slab: Angle Dependence and Symmetry of the Unit Cell," Phys. Rev. Lett. 91, 1-4 (2003).
    [CrossRef]
  3. A. F. Gibson, M. F. Kimmitt, and A. C. Walker, "Photon drag in Germanium," Appl. Phys. Lett. 17, 75-77 (1970).
    [CrossRef]
  4. A. M. Danishenskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, "Dragging of free carriers by photons in direct interband transitions in semiconductors," Soviet Phys.-JETP 31, 292-295 (1970).
  5. A. D. Wieck, H. Sigg, and K. Ploog, "Observation of Resonant Photon Drag in a Two-Dimensional Electron Gas," Phys. Rev. Lett. 64, 463-466 (1990).
    [CrossRef] [PubMed]
  6. R. Laiho, "Observation of photoinduced bulk current in metals," Phys. Rev. B 52, 15054-15057 (1995).
    [CrossRef]
  7. J. E. Goff and W. L. Schaich, "Hydrodynamic theory of photon drag," Phys. Rev. B 56, 15421-15430 (1997).
    [CrossRef]
  8. A. S. Vengurlekar and T. Ishihara, "Surface plasmon enhanced photon drag in metal films," Appl. Phys. Lett. 87, 091118:1-3 (2005).
  9. T. Ishihara, "Optical response of semiconductor�??and metal-embedded photonic crystal slabs," Phys. Status Solidi A 201, 398-404 (2004).
    [CrossRef]
  10. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102:1-17 (2002).
    [CrossRef]
  11. M. Iwanaga, A. S. Vengurlekar, T. Hatano, and T. Ishihara, "Reciprocal transmittances and reflectances: An elementary proof," Am. J. Phys. 75, 899-902 (2007).
    [CrossRef]

2007

M. Iwanaga, A. S. Vengurlekar, T. Hatano, and T. Ishihara, "Reciprocal transmittances and reflectances: An elementary proof," Am. J. Phys. 75, 899-902 (2007).
[CrossRef]

2004

T. Ishihara, "Optical response of semiconductor�??and metal-embedded photonic crystal slabs," Phys. Status Solidi A 201, 398-404 (2004).
[CrossRef]

2003

T. Ishihara, K. Koshino, and H. Nakashima, "Second Harmonic Generation due to Quadrupole Interaction in a Photonic Crystal Slab: Angle Dependence and Symmetry of the Unit Cell," Phys. Rev. Lett. 91, 1-4 (2003).
[CrossRef]

2002

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102:1-17 (2002).
[CrossRef]

1997

J. E. Goff and W. L. Schaich, "Hydrodynamic theory of photon drag," Phys. Rev. B 56, 15421-15430 (1997).
[CrossRef]

1995

R. Laiho, "Observation of photoinduced bulk current in metals," Phys. Rev. B 52, 15054-15057 (1995).
[CrossRef]

1990

A. D. Wieck, H. Sigg, and K. Ploog, "Observation of Resonant Photon Drag in a Two-Dimensional Electron Gas," Phys. Rev. Lett. 64, 463-466 (1990).
[CrossRef] [PubMed]

1970

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, "Photon drag in Germanium," Appl. Phys. Lett. 17, 75-77 (1970).
[CrossRef]

A. M. Danishenskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, "Dragging of free carriers by photons in direct interband transitions in semiconductors," Soviet Phys.-JETP 31, 292-295 (1970).

Danishenskii, A. M.

A. M. Danishenskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, "Dragging of free carriers by photons in direct interband transitions in semiconductors," Soviet Phys.-JETP 31, 292-295 (1970).

Gibson, A. F.

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, "Photon drag in Germanium," Appl. Phys. Lett. 17, 75-77 (1970).
[CrossRef]

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102:1-17 (2002).
[CrossRef]

Goff, J. E.

J. E. Goff and W. L. Schaich, "Hydrodynamic theory of photon drag," Phys. Rev. B 56, 15421-15430 (1997).
[CrossRef]

Hatano, T.

M. Iwanaga, A. S. Vengurlekar, T. Hatano, and T. Ishihara, "Reciprocal transmittances and reflectances: An elementary proof," Am. J. Phys. 75, 899-902 (2007).
[CrossRef]

Ishihara, T.

M. Iwanaga, A. S. Vengurlekar, T. Hatano, and T. Ishihara, "Reciprocal transmittances and reflectances: An elementary proof," Am. J. Phys. 75, 899-902 (2007).
[CrossRef]

T. Ishihara, "Optical response of semiconductor�??and metal-embedded photonic crystal slabs," Phys. Status Solidi A 201, 398-404 (2004).
[CrossRef]

T. Ishihara, K. Koshino, and H. Nakashima, "Second Harmonic Generation due to Quadrupole Interaction in a Photonic Crystal Slab: Angle Dependence and Symmetry of the Unit Cell," Phys. Rev. Lett. 91, 1-4 (2003).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102:1-17 (2002).
[CrossRef]

A. S. Vengurlekar and T. Ishihara, "Surface plasmon enhanced photon drag in metal films," Appl. Phys. Lett. 87, 091118:1-3 (2005).

Iwanaga, M.

M. Iwanaga, A. S. Vengurlekar, T. Hatano, and T. Ishihara, "Reciprocal transmittances and reflectances: An elementary proof," Am. J. Phys. 75, 899-902 (2007).
[CrossRef]

Kastalskii, A. A.

A. M. Danishenskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, "Dragging of free carriers by photons in direct interband transitions in semiconductors," Soviet Phys.-JETP 31, 292-295 (1970).

Kimmitt, M. F.

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, "Photon drag in Germanium," Appl. Phys. Lett. 17, 75-77 (1970).
[CrossRef]

Koshino, K.

T. Ishihara, K. Koshino, and H. Nakashima, "Second Harmonic Generation due to Quadrupole Interaction in a Photonic Crystal Slab: Angle Dependence and Symmetry of the Unit Cell," Phys. Rev. Lett. 91, 1-4 (2003).
[CrossRef]

Laiho, R.

R. Laiho, "Observation of photoinduced bulk current in metals," Phys. Rev. B 52, 15054-15057 (1995).
[CrossRef]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102:1-17 (2002).
[CrossRef]

Nakashima, H.

T. Ishihara, K. Koshino, and H. Nakashima, "Second Harmonic Generation due to Quadrupole Interaction in a Photonic Crystal Slab: Angle Dependence and Symmetry of the Unit Cell," Phys. Rev. Lett. 91, 1-4 (2003).
[CrossRef]

Ploog, K.

A. D. Wieck, H. Sigg, and K. Ploog, "Observation of Resonant Photon Drag in a Two-Dimensional Electron Gas," Phys. Rev. Lett. 64, 463-466 (1990).
[CrossRef] [PubMed]

Ryvkin, S. M.

A. M. Danishenskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, "Dragging of free carriers by photons in direct interband transitions in semiconductors," Soviet Phys.-JETP 31, 292-295 (1970).

Schaich, W. L.

J. E. Goff and W. L. Schaich, "Hydrodynamic theory of photon drag," Phys. Rev. B 56, 15421-15430 (1997).
[CrossRef]

Sigg, H.

A. D. Wieck, H. Sigg, and K. Ploog, "Observation of Resonant Photon Drag in a Two-Dimensional Electron Gas," Phys. Rev. Lett. 64, 463-466 (1990).
[CrossRef] [PubMed]

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102:1-17 (2002).
[CrossRef]

Vengurlekar, A. S.

M. Iwanaga, A. S. Vengurlekar, T. Hatano, and T. Ishihara, "Reciprocal transmittances and reflectances: An elementary proof," Am. J. Phys. 75, 899-902 (2007).
[CrossRef]

A. S. Vengurlekar and T. Ishihara, "Surface plasmon enhanced photon drag in metal films," Appl. Phys. Lett. 87, 091118:1-3 (2005).

Walker, A. C.

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, "Photon drag in Germanium," Appl. Phys. Lett. 17, 75-77 (1970).
[CrossRef]

Wieck, A. D.

A. D. Wieck, H. Sigg, and K. Ploog, "Observation of Resonant Photon Drag in a Two-Dimensional Electron Gas," Phys. Rev. Lett. 64, 463-466 (1990).
[CrossRef] [PubMed]

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102:1-17 (2002).
[CrossRef]

Yaroshetskii, I. D.

A. M. Danishenskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, "Dragging of free carriers by photons in direct interband transitions in semiconductors," Soviet Phys.-JETP 31, 292-295 (1970).

Am. J. Phys.

M. Iwanaga, A. S. Vengurlekar, T. Hatano, and T. Ishihara, "Reciprocal transmittances and reflectances: An elementary proof," Am. J. Phys. 75, 899-902 (2007).
[CrossRef]

Appl. Phys. Lett.

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, "Photon drag in Germanium," Appl. Phys. Lett. 17, 75-77 (1970).
[CrossRef]

A. S. Vengurlekar and T. Ishihara, "Surface plasmon enhanced photon drag in metal films," Appl. Phys. Lett. 87, 091118:1-3 (2005).

Phys. Rev. B

R. Laiho, "Observation of photoinduced bulk current in metals," Phys. Rev. B 52, 15054-15057 (1995).
[CrossRef]

J. E. Goff and W. L. Schaich, "Hydrodynamic theory of photon drag," Phys. Rev. B 56, 15421-15430 (1997).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102:1-17 (2002).
[CrossRef]

Phys. Rev. Lett.

A. D. Wieck, H. Sigg, and K. Ploog, "Observation of Resonant Photon Drag in a Two-Dimensional Electron Gas," Phys. Rev. Lett. 64, 463-466 (1990).
[CrossRef] [PubMed]

T. Ishihara, K. Koshino, and H. Nakashima, "Second Harmonic Generation due to Quadrupole Interaction in a Photonic Crystal Slab: Angle Dependence and Symmetry of the Unit Cell," Phys. Rev. Lett. 91, 1-4 (2003).
[CrossRef]

Phys. Status Solidi A

T. Ishihara, "Optical response of semiconductor�??and metal-embedded photonic crystal slabs," Phys. Status Solidi A 201, 398-404 (2004).
[CrossRef]

Soviet Phys.-JETP

A. M. Danishenskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, "Dragging of free carriers by photons in direct interband transitions in semiconductors," Soviet Phys.-JETP 31, 292-295 (1970).

Other

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984,) p.86.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

AFM images of periodic structures fabricated on Au layers and their profiles for (a) symmetric and (b) asymmetric structures, respectively. (c) Schematic diagram of asymmetry in sample profile and diffractions. Coordinate and voltage sign are also defined.

Fig. 2.
Fig. 2.

Experimental set up. Nanosecond pulsed laser light is sent to sample with incident angle θ. The figure is drawn for θ .>0.

Fig. 3.
Fig. 3.

Photovoltage at the laser wavelength 1200 nm, as a function of incident angle θ for symmetric (a) and asymmetric (b) structures. At 2 and 25 deg, spiky structures induced by diffraction channel opening of diffraction appear for both (a) and (b)

Fig. 4.
Fig. 4.

(a) Photovoltage at normal incidence as a function of laser wavelength for symmetric (black line) and asymmetric (red line) structures. Photovoltage estimated from diffraction spectra is also shown (blue line). (b) Calculated diffraction spectra of lower indices.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ћ k sin θ = ћ R k sin θ + ћ Tk sin θ + g , j ћ D g j ( k sin θ + G g ) + ћ K
P = ћ K · I ћ ω = I ω [ A k sin θ g = open j = Air , Substrate g G D g j ] = I c [ A sin θ λ Λ g D g j ]
P = I c λ Λ g = open j = Air , Substrate g D g j
PWL = n WLd · ( e ) E
V = 0 L Edx = LP ned = I nec L d λ Λ g = open j = Air , Substrate g D g j

Metrics