Abstract

We demonstrate refractive index sensing using photonic crystal point shift nanolasers. These lasers operate continuously at room temperature by photopumping in a liquid, and exhibit a 50-dB peak intensity over the background level and a spectral linewidth of <26 pm, the resolution limit of the present experiment. The lasing wavelength shifts by soaking in different liquids; the wavelength to index sensitivity was 350 nm/RIU, the highest value recorded to date for nanocavity- based sensors. An index resolution of 9.0×10-5 was thus confirmed, leading to an expectation of a resolution of <10-6. We propose and demonstrate a spectrometer-free sensor based on nanolasers in an array configuration. These will be disposable sensors with very simple optical I/O. They are anticipated to be integrated with biochips and used for label-free single molecule detection.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 - 386 (2006).
    [CrossRef]
  2. C. Monat, P. Domachuk and B. J. Eggleton, "Integrated optofluidics: a new river of light," Nat. Photonics 1, 106-114 (2007).
    [CrossRef]
  3. F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
    [CrossRef]
  4. I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
    [CrossRef]
  5. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science (2007).
  6. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
    [CrossRef]
  7. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093 (2004)
    [CrossRef] [PubMed]
  8. Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda, "Inverse silica opal photonic crystals for optical sensing applications," Opt. Express 15, 12979-12987 (2007).
    [CrossRef] [PubMed]
  9. M. R. Lee and PhilippeM. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  10. M. R. Lee and P. M. Fauchet, "Nanoscale microcavity sensor for single particle detection," Opt. Lett. 32, 3284-3286 (2007).
    [CrossRef] [PubMed]
  11. M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
    [CrossRef]
  12. M. L. Adams, G. A. DeRose, M. Loncar and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
    [CrossRef]
  13. M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystals nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 -1354 (2005).
    [CrossRef]
  14. H. Watanabe, K. Nozaki, and T. Baba, "Very Wide Wavelength Chirping in Photonic Crystal Nanolaser," The 34th International Symposium on Compound Semiconductors, ThC P10 (2007).
  15. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
    [CrossRef] [PubMed]
  16. K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 21101 (2006).
    [CrossRef]
  17. F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999).
    [CrossRef]

2007 (6)

2006 (2)

K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 21101 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 - 386 (2006).
[CrossRef]

2005 (3)

M. L. Adams, G. A. DeRose, M. Loncar and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystals nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 -1354 (2005).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

2004 (1)

2003 (1)

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

2002 (1)

F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

1999 (1)

F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999).
[CrossRef]

Adams, M. L.

M. L. Adams, G. A. DeRose, M. Loncar and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystals nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 -1354 (2005).
[CrossRef]

Arnold, S.

F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Baba, T.

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
[CrossRef] [PubMed]

K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 21101 (2006).
[CrossRef]

Braun, D.

F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Chow, E.

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

De Sopra, F. M.

F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999).
[CrossRef]

DeRose, G. A.

M. L. Adams, G. A. DeRose, M. Loncar and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk and B. J. Eggleton, "Integrated optofluidics: a new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk and B. J. Eggleton, "Integrated optofluidics: a new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Fan, X.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Fauchet, P. M.

Follmer, F.

F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Gauggel, H. P.

F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999).
[CrossRef]

Girolami, G.

Grot, A.

Gulden, K.

F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999).
[CrossRef]

Hanumegowda, N. M.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Hovel, R.

F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999).
[CrossRef]

Juodkazis, S.

Khoshsima, M.

F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Kita, S.

Lee, M. R.

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Libchaber, A.

F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Loncar, M.

M. L. Adams, G. A. DeRose, M. Loncar and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystals nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 -1354 (2005).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Maeda, K.

Mirkarimi, L. W.

Misawa, H.

Mizeikis, V.

Monat, C.

C. Monat, P. Domachuk and B. J. Eggleton, "Integrated optofluidics: a new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Moser, M.

F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999).
[CrossRef]

Nishijima, Y.

Nozaki, K.

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
[CrossRef] [PubMed]

K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 21101 (2006).
[CrossRef]

Oveys, H.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Philippe, M. R.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 - 386 (2006).
[CrossRef]

Qiu, Y.

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystals nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 -1354 (2005).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 - 386 (2006).
[CrossRef]

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Scherer, A.

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystals nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 -1354 (2005).
[CrossRef]

M. L. Adams, G. A. DeRose, M. Loncar and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

Sigalas, M.

Suter, J.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Tanimura, T.

Teraoka, I.

F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Ueno, K.

White, I. M.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 - 386 (2006).
[CrossRef]

Zappe, H. P.

F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999).
[CrossRef]

Zhu, H.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Zourob, M.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

F. Follmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003).
[CrossRef]

K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 21101 (2006).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystals nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 -1354 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. M. De Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, "Near-infrared vertical-cavity surface-emitting lasers with 3-MHzlinewidth," IEEE Photon. Technol. Lett. 11, 1533 - 1535 (1999).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

IEEE Sens. J. (1)

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. L. Adams, G. A. DeRose, M. Loncar and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk and B. J. Eggleton, "Integrated optofluidics: a new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 - 386 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (2)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science (2007).

H. Watanabe, K. Nozaki, and T. Baba, "Very Wide Wavelength Chirping in Photonic Crystal Nanolaser," The 34th International Symposium on Compound Semiconductors, ThC P10 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Room-temperature cw lasing characteristics of H0 nanolaser in liquids. (a) Lasing spectrum and SEM image of the measured device. (b) Lasing spectra for n env=1.296, 1.315, 1.325, 1.335, 1.344, 1.354, 1.363, 1.373 from left to right.

Fig. 2.
Fig. 2.

Modal behaviors of H0 nanolaser. Theoretical lines and experimental plots (open circles) of lasing wavelength for (a) monopole mode and (b) dipole mode. Each inset show calculated modal profile (H z).

Fig. 3.
Fig. 3.

Theoretical lines and experimental plots (open circles) of index sensitivity Δλ/Δn env with (a) s x and (b) s y.

Fig. 4.
Fig. 4.

SEM image of fabricated 2×2 H0 nanolaser array.

Fig. 5.
Fig. 5.

Lasing spectra and NFP of nanolaser array for different n env. Transmission spectrum of BPF used for the observation of the NFP is shown above the spectra. NFPs.

Metrics