Abstract

We have developed an improved adaptive optics - optical coherence tomography (AO-OCT) system and evaluated its performance for in vivo imaging of normal and pathologic retina. The instrument provides unprecedented image quality at the retina with isotropic 3D resolution of 3.5×3.5×3.5 µm3. Critical to the instrument’s resolution is a customized achromatizing lens that corrects for the eye’s longitudinal chromatic aberration and an ultra broadband light source (Δλ=112nm λ0=~836 nm). The eye’s transverse chromatic aberrations is modeled and predicted to be sufficiently small for the imaging conditions considered. The achromatizing lens was strategically placed at the light input of the AO-OCT sample arm. This location simplifies use of the achromatizing lens and allows straightforward implementation into existing OCT systems. Lateral resolution was achieved with an AO system that cascades two wavefront correctors, a large stroke bimorph deformable mirror (DM) and a micro-electromechanical system (MEMS) DM with a high number of actuators. This combination yielded diffraction-limited imaging in the eyes examined. An added benefit of the broadband light source is the reduction of speckle size in the axial dimension. Additionally, speckle contrast was reduced by averaging multiple B-scans of the same proximal patch of retina. The combination of improved micron-scale 3D resolution, and reduced speckle size and contrast were found to significantly improve visibility of microscopic structures in the retina.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  3. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  4. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
    [CrossRef] [PubMed]
  5. M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
    [CrossRef] [PubMed]
  6. S. Alam, R. J. Zawadzki, S. S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
    [CrossRef] [PubMed]
  7. S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
    [CrossRef] [PubMed]
  8. W. Drexler and J. G. Fujimoto, "Optical coherence tomography in ophthalmology" J. Biomed. Opt. 12, 041201 (2007).
    [CrossRef]
  9. W. J. Donnelly III and A. Roorda, "Optimal pupil size in the human eye for axial resolution," J. Opt. Soc. Am. A 20, 2010-2015 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-11-2010.
    [CrossRef]
  10. J. Liang, D. R. Williams and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-14-11-2884.
    [CrossRef]
  11. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
    [PubMed]
  12. D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, "Coherence gating and adaptive optics in the eye," Proc. SPIE 4956, 65-72 (2003).
    [CrossRef]
  13. B. Hermann, E. J. Fernandez, A. Unterhubner, H. Sattmann, A. F. Fercher, and W. Drexler, P. M. Prieto and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  14. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
    [CrossRef] [PubMed]
  15. Y. Zhang, J. Rha, R. S. Jonnal, D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
    [CrossRef] [PubMed]
  16. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
    [CrossRef] [PubMed]
  17. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
    [CrossRef] [PubMed]
  18. E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
    [CrossRef] [PubMed]
  19. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Olivier, J. S. Werner, "Adaptive optics - optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions." J. Opt. Soc. Am. A 24, 1373-1383 (2007).
    [CrossRef]
  20. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-24-5-1327.
    [CrossRef]
  21. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high- speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-9-405.
    [CrossRef]
  22. M. Pircher and R. J. Zawadzki, "Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo," Expert Review of Ophthalmology 2, 1019-1035 (2007).
    [CrossRef]
  23. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
    [CrossRef] [PubMed]
  24. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-21-2067.
    [CrossRef] [PubMed]
  25. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  26. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
    [CrossRef] [PubMed]
  27. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J.G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  28. T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, "Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration�??method and clinical examples" J. Biomed. Opt. 12, 041208 (2007).
    [CrossRef] [PubMed]
  29. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
  30. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
    [CrossRef] [PubMed]
  31. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
    [CrossRef] [PubMed]
  32. D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-22-1-29.
    [CrossRef]
  33. A. C. van Heel, "Correcting the spherical and chromatic aberrations of the eye," J. Opt. Soc. Am. 36, 237-239 (1947).
  34. R. E. Bedford and G. Wyszecki, "Axial chromatic aberration of the human eye," J. Opt. Soc. Am. 47, 564-565 (1957).
    [CrossRef] [PubMed]
  35. A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
    [PubMed]
  36. R. Navarro, J. Santamaria, and J. Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273 - 1281 (1985), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-2-8-1273.
    [CrossRef] [PubMed]
  37. I. Powell, "Lenses for correcting chromatic aberration of the eye," Appl. Opt. 20, 4152-4155 (1981).
    [CrossRef] [PubMed]
  38. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, "Wide-angle chromatic aberration corrector for the human eye," J. Opt. Soc. Am. A 24, 1538-1544 (2007).
    [CrossRef]
  39. X. Zhang, A. Bradley, and L. N. Thibos, "Achromatizing the human eye: the problem of chromatic parallax," J. Opt. Soc. Am. A 8, 686-691 (1991), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-8-4-686.
    [CrossRef] [PubMed]
  40. L. N. Thibos, "Calculation of the influence of lateral chromatic aberration on image quality across the visual field," J. Opt. Soc. Am. A 4, 1673-1680 (1987), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-4-8-1673.
    [CrossRef] [PubMed]
  41. X. Zhang, A. Bradley, and L. N. Thibos, "Experimental determination of the chromatic difference of magnification of the human eye and the location of the anterior nodal point," J. Opt. Soc. Am. A 10, 213-220 (1993), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-10-2-213.
    [CrossRef] [PubMed]
  42. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, "Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle �? in a population of young adult eyes," J. Opt. Soc. Am. A 12, 2348-2357 (1995).
    [CrossRef]

2008 (1)

2007 (7)

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-24-5-1327.
[CrossRef]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Olivier, J. S. Werner, "Adaptive optics - optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions." J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, "Wide-angle chromatic aberration corrector for the human eye," J. Opt. Soc. Am. A 24, 1538-1544 (2007).
[CrossRef]

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, "Optical coherence tomography in ophthalmology" J. Biomed. Opt. 12, 041201 (2007).
[CrossRef]

M. Pircher and R. J. Zawadzki, "Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo," Expert Review of Ophthalmology 2, 1019-1035 (2007).
[CrossRef]

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, "Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration�??method and clinical examples" J. Biomed. Opt. 12, 041208 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (6)

E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
[CrossRef] [PubMed]

D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-22-1-29.
[CrossRef]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. S. Jonnal, D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (4)

2002 (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

1997 (1)

1995 (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, "Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle �? in a population of young adult eyes," J. Opt. Soc. Am. A 12, 2348-2357 (1995).
[CrossRef]

1993 (1)

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

X. Zhang, A. Bradley, and L. N. Thibos, "Achromatizing the human eye: the problem of chromatic parallax," J. Opt. Soc. Am. A 8, 686-691 (1991), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-8-4-686.
[CrossRef] [PubMed]

1987 (1)

1985 (1)

1982 (1)

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

1981 (1)

1957 (1)

1947 (1)

Alam, S.

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Anhelt, P.

E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Artal, P.

Atchison, D. A.

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Bedford, R. E.

Benny, Y.

Bescos, J.

Bigelow, C. E.

Bloom, B.

Bouma, B. E.

Bower, B. A.

Bradley, A.

Bradu, A.

Campbell, M. C. W.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chisholm, W.

Choi, S.

Choi, S. S.

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Olivier, J. S. Werner, "Adaptive optics - optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions." J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Christensen, U.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, "Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration�??method and clinical examples" J. Biomed. Opt. 12, 041208 (2007).
[CrossRef] [PubMed]

Dainty, C.

de Boer, J. F.

Donnelly, W. J.

Drexler, W.

W. Drexler and J. G. Fujimoto, "Optical coherence tomography in ophthalmology" J. Biomed. Opt. 12, 041201 (2007).
[CrossRef]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhubner, H. Sattmann, A. F. Fercher, and W. Drexler, P. M. Prieto and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Duker, J.

M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
[CrossRef] [PubMed]

Duker, J. S.

Elzaiat, Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Evans, J. W.

Fercher, A. F.

B. Hermann, E. J. Fernandez, A. Unterhubner, H. Sattmann, A. F. Fercher, and W. Drexler, P. M. Prieto and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Ferguson, R. D.

Fernandez, E. J.

Fernández, E.

E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Fernández, E. J.

Flotte, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, "Optical coherence tomography in ophthalmology" J. Biomed. Opt. 12, 041201 (2007).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Fujimoto, J.G.

Gao, W.

Gerth, C.

S. Alam, R. J. Zawadzki, S. S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hammer, D. X.

Hebert, T. J.

Hermann, B.

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Iftimia, N. V.

Izatt, J. A.

Jones, S.

Jones, S. M.

Jonnal, R. S.

Jørgensen, T. M.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, "Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration�??method and clinical examples" J. Biomed. Opt. 12, 041208 (2007).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Katz, M.

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Ko, T.

M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
[CrossRef] [PubMed]

Ko, T. H.

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J.G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Laut, S.

Leitgeb, R.

E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Lewis, A. L.

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Liang, J.

Lidkea, B.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Manzanera, S.

Merino, D.

Miller, D. T.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Morse, L.

S. Alam, R. J. Zawadzki, S. S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Morse, L. S.

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

Nassif, N. A.

Navarro, R.

Oehrlein, C.

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Olivier, S.

Olivier, S. S.

Park, B. H.

Park, S. S.

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Pierce, M. C.

Pircher, M.

Podoleanu, A. G.

Povazay, B.

E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Považay, B.

Powell, I.

Prieto, P.

E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Prieto, P. M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Qu, J.

D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, "Coherence gating and adaptive optics in the eye," Proc. SPIE 4956, 65-72 (2003).
[CrossRef]

Queener, H.

Rha, J.

Ribak, E. N.

Romero-Borja, F.

Roorda, A.

Rynders, M.

Sander, B.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, "Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration�??method and clinical examples" J. Biomed. Opt. 12, 041208 (2007).
[CrossRef] [PubMed]

Santamaria, J.

Sattman, H.

E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Sattmann, H.

Schuman, J.

M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
[CrossRef] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Smith, G.

Soliman, W.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, "Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration�??method and clinical examples" J. Biomed. Opt. 12, 041208 (2007).
[CrossRef] [PubMed]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Telander, D. G.

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

Thibos, L. N.

Thomadsen, J.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, "Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration�??method and clinical examples" J. Biomed. Opt. 12, 041208 (2007).
[CrossRef] [PubMed]

Thorn, K.

D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, "Coherence gating and adaptive optics in the eye," Proc. SPIE 4956, 65-72 (2003).
[CrossRef]

Truong, S. N.

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

Unterhuber, A.

Unterhubner, A.

Ustun, T. E.

van Heel, A. C.

Werner, J. S.

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high- speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-9-405.
[CrossRef]

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Olivier, J. S. Werner, "Adaptive optics - optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions." J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

Williams, D. R.

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J.G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Wyszecki, G.

Yun, S. H.

Zawadzki, R. J.

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high- speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-9-405.
[CrossRef]

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

M. Pircher and R. J. Zawadzki, "Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo," Expert Review of Ophthalmology 2, 1019-1035 (2007).
[CrossRef]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Olivier, J. S. Werner, "Adaptive optics - optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions." J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

Zhang, X.

Zhang, Y.

Zhao, M.

Am. J. Optom. Physiol. Opt. (1)

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Appl. Opt. (1)

Expert Review of Ophthalmology (1)

M. Pircher and R. J. Zawadzki, "Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo," Expert Review of Ophthalmology 2, 1019-1035 (2007).
[CrossRef]

J. Biomed. Opt. (3)

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, "Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration�??method and clinical examples" J. Biomed. Opt. 12, 041208 (2007).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, "Optical coherence tomography in ophthalmology" J. Biomed. Opt. 12, 041201 (2007).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (11)

R. Navarro, J. Santamaria, and J. Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273 - 1281 (1985), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-2-8-1273.
[CrossRef] [PubMed]

X. Zhang, A. Bradley, and L. N. Thibos, "Achromatizing the human eye: the problem of chromatic parallax," J. Opt. Soc. Am. A 8, 686-691 (1991), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-8-4-686.
[CrossRef] [PubMed]

W. J. Donnelly III and A. Roorda, "Optimal pupil size in the human eye for axial resolution," J. Opt. Soc. Am. A 20, 2010-2015 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-11-2010.
[CrossRef]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, "Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle �? in a population of young adult eyes," J. Opt. Soc. Am. A 12, 2348-2357 (1995).
[CrossRef]

D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-22-1-29.
[CrossRef]

J. Liang, D. R. Williams and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-14-11-2884.
[CrossRef]

L. N. Thibos, "Calculation of the influence of lateral chromatic aberration on image quality across the visual field," J. Opt. Soc. Am. A 4, 1673-1680 (1987), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-4-8-1673.
[CrossRef] [PubMed]

X. Zhang, A. Bradley, and L. N. Thibos, "Experimental determination of the chromatic difference of magnification of the human eye and the location of the anterior nodal point," J. Opt. Soc. Am. A 10, 213-220 (1993), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-10-2-213.
[CrossRef] [PubMed]

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-24-5-1327.
[CrossRef]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Olivier, J. S. Werner, "Adaptive optics - optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions." J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, "Wide-angle chromatic aberration corrector for the human eye," J. Opt. Soc. Am. A 24, 1538-1544 (2007).
[CrossRef]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Ophthalmology (2)

M. Wojtkowski, V. Srinivasan, J. Fujimoto, T. Ko, J. Schuman, A. Kowalczyk, and J. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology,  112, 1734-1746 (2005).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (11)

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. S. Jonnal, D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J.G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. SPIE (1)

D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, "Coherence gating and adaptive optics in the eye," Proc. SPIE 4956, 65-72 (2003).
[CrossRef]

Retina (1)

S. N. Truong, S. Alam, R. J. Zawadzki, S. S. Choi, D. G. Telander, S. S. Park, J. S. Werner and L. S. Morse, "High-resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation," Retina 27, 915-925 (2007).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Vision. Res. (1)

E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision. Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Other (1)

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Supplementary Material (7)

» Media 1: AVI (4692 KB)     
» Media 2: AVI (2511 KB)     
» Media 3: AVI (10031 KB)     
» Media 4: AVI (1678 KB)     
» Media 5: AVI (6645 KB)     
» Media 6: AVI (1678 KB)     
» Media 7: AVI (6645 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Upper panel shows unfolded version of schematic of the sample arms of the AO-UHROCT instrument. The light travels from left to right in the upper panel. P and R refer to pupil and retinal conjugate planes, respectively; AL – achromatizing lens; S –spherical mirror; V – vertical, H – horizontal scanner. Lower panel shows layout of the sample arm screen shot from system simulation in Zemax. Note the location of the achromatizing lens, which is positioned adjacent to the collimating lens in the pupil conjugate plane, P0.

Fig. 2.
Fig. 2.

Eye alignment and use of an achromatizing lens influence the impact of ocular chromatic aberrations on retinal imaging. (a) On-axis imaging without an achromatizing lens is degraded by the eye’s LCA. TCA, on the other hand, is zero as the eye’s achromatic axis and camera’s optical axis are coaligned. (b) LCA is removed by introduction of an achromatizing lens. TCA is again zero as the axes remain coaligned. (c) Off-axis imaging allows view of the peripheral retina, but necessitates rotation of the eye relative to the axis of the camera, in this case by an amount ϕ. LCA of the eye is largely insensitive to rotation, while TCA is not. (d) For off-axis imaging, TCA can be removed by lateral shifting of the eye such that the eye’s nodal point once again intersects the camera’s optical axis. (key: AA – eye’s achromatic axis; OA – camera’s optical axis; N – eye’s nodal point; E – center of eye’s entrance pupil; h – displacement of eye’s nodal point from the camera’s optical axis; ϕ – rotation of eye about E.)

Fig. 3.
Fig. 3.

Design of collimating doublet (achromatizing lens+commercial achromat) used at the entrance of the AO-UHR-OCT system. The achromatizing lens is a zero-power triplet. Red arrow indicates direction of the light emitted from the fiber (to the right of the doublet).

Fig. 4.
Fig. 4.

Range of eye rotation, ±ϕ, over which TCA can be zeroed simply by re-positioning the eye until its nodal point conincides with the camera’s optical axis. Maximum rotation is reached when the eye’s pupil begins to occlude the camera’s exit pupil. Diameter of the eye’s pupil was set to 8 mm. Separation of the nodal point and entrance pupil of the eye is assumed to be 4 mm [40]. Dashed line highlights maximum rotation predicted for the AO-UHR-OCT system described here (6.6 mm pupil).

Fig. 5.
Fig. 5.

Modeling of TCA as a function of (left) lateral misalignment of the eye, h, and (right) off-axis imaging, ϕ. (Left) TCA is plotted as a function of lateral displacement of the eye’s nodal point relative to the optical axis of the retina camera. (Right) TCA is plotted as a function of eye rotation (defined as the angle between the camera’s optical axis and the eye’s achromatic axis). The eye’s entrance pupil remains centered on the camera’s optical axis, which is consistent with our experimental alignment protocol. Three near-infrared bands were chosen that correspond to specific OCT light sources.

Fig. 6.
Fig. 6.

(Left axis) Spectral distribution of two light sources used to evaluate the performance of our custom achromatizing lens. (Right axis) Chromatic focal shift at the retina is predicted using a Zemax model of the eye and retina camera combination with and without the achromatizing lens. Depth of focus expected for diffraction-limited performance through a 6.6 mm pupil is also shown.

Fig. 7.
Fig. 7.

Coherence function obtained from a reflective spot in the fovea. The measured coherence length in tissue (n=1.38) after dispersion compensation was ~6.5 µm for the 371-HP SLD and ~3.5 µm for the Broadlighter T840-HP.

Fig. 8.
Fig. 8.

Comparison of AO-OCT vs. AO-UHR-OCT system performance. A. (4.58 MB) Real-time movie of the in-vivo retina acquired at 4.5° NR eccentricity of the same 35-year-old volunteer (500 A-scans over line of 0.5 mm) by an AO-OCT system with 6.5 µm (left) and AO-UHR-OCT system with 3.5 µm axial resolution (right). AO focus was set on photoreceptor layers. Dashed rectangles correspond to the magnified regions shown in panels B and C. B. Two-fold enlargement of the photoreceptor layer acquired with AO-OCT (left image on panel A). C. Two-fold enlargement of the photoreceptor layer acquired with AO-UHR-OCT (right image on panel A). Retinal Nerve Fiber Layer (RNFL), Ganglion Cell Layer (GCL), Inner Plexiform Layer (IPL), Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL), Fibers of Henle with Outer Nuclear Layer (ONL), Outer Limiting Membrane (OLM), Inner/Outer Segment Junction (I/OS), Verhoeff’s Membrane (VM) created by end tips of cone photoreceptor outer segments, Retinal Pigment Epithelium (RPE), and Choriocapillaris and Choroid (Ch). [Media 1]

Fig. 9.
Fig. 9.

Comparison of AO-UHR-OCT with and without the achromatizing lens. B-scan acquired at 4.5° NR eccentricity of the same 33-year-old volunteer (500 A-scans correspond to 0.5 mm) by an AO- UHR-OCT system without achromatizing lens (A) and with achromatizing lens (B). AO focus was set on the photoreceptor layer. (C.) Two-fold enlargement of the photoreceptor layer acquired by AO-UHR-OCT without achromatizing lens (linear intensity scale). (D.) Two-fold enlargement of the photoreceptor layer acquired by AO-UHR-OCT with achromatizing lens (linear intensity scale). Photoreceptor Inner Segment (IS), Photoreceptor Outer Segment (OS). Dashed red rectangles show examples of cone photoreceptors inner segments. Dashed yellow rectangles show examples of cone photoreceptors outer segments.

Fig. 10.
Fig. 10.

Comparison of single frame vs. average frame images obtained with AO-UHR-OCT system. AO focus was set on inner retina layers. A. (2.5 MB) Real-time movie acquired with AO-UHR-OCT at 9° S 4.5° NR eccentricity of healthy 55-year-old volunteer (500 A-scans over line of 0.5 mm). Dashed rectangle corresponds to the magnified region shown in panel C. (10 MB version) B. An average of 10 AO-UHR-OCT frames from movie in the panel A. Dashed rectangle corresponds to the magnified region showed in panel D. C. Two-fold enlargement of the single frame of inner retina acquired with AO-UHR-OCT (panel A). D. Two-fold enlargement of the inner retina region from averaged frame (panel B). Note improved visibility of retinal microscopic retinal features on panel D if compared to panel C. Arrows indicate location of micro capillaries in the inner retina. Dashed circles indicate location of the nerve fiber bundles. [Media 2][Media 3]

Fig. 11.
Fig. 11.

Comparison of single frame vs. average frame images obtained with an AO-UHR-OCT system. AO focus was set on the ONL. A. (1.6 MB) Real-time movie acquired with AO-UHR-OCT at the fovea of a 65-year-old subject (1000 A-scans over line of 1 mm). Dashed rectangle corresponds to the magnified region showed in panel C. (6.6 MB version) B. An average of 10 AO-UHR-OCT frames from the movie in panel A. Dashed rectangle corresponds to the magnified region shown in panel D. C. Two- fold enlargement of the single frame acquired with AO-UHR-OCT(panel A). D. Two-fold enlargement of the averaged frame (panel B). Arrows indicate probable location of the cells still attached to shrinking vitreous that pull the outer retina outward. [Media 4][Media 5]

Fig. 12.
Fig. 12.

Comparison of single frame vs. average frame images obtained with AO-UHR-OCT system. AO focus was set on the ONL. A. (1.6 MB) Real-time movie acquired with AO-UHR-OCT at the fovea of 55-year-old subject (1000 A-scans over line of 1 mm). Dashed rectangle corresponds to the magnified region shown in panel C. (6.6 MB version) B. An average of 10 AO-UHR-OCT frames from movie in the panel A. Dashed rectangle corresponds to the magnified region presented in panel D. C. Two-fold enlargement of the single frame acquired with AO-UHR-OCT (panel A). D. Two-fold enlargement of the averaged frame (panel B). Arrows indicate location of the scattering structures lying within the ONL that are probably responsible for the micro scotoma. [Media 6][Media 7]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

TCA = ( F a F b ) h ,
h = NE tan ( ϕ ) ,

Metrics