Abstract

Lens effect was obtained in an open microfluidic system by using a thin layer of liquid on a polar electric crystal like LiNbO3. An array of liquid micro-lenses was generated by electrowetting effect in pyroelectric periodically poled crystals. Compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuitless configuration. An interferometric technique was used to characterize the curvature of the micro-lenses and the corresponding results are presented and discussed. The preliminary results concerning the imaging capability of the micro-lens array are also reported.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ferraro, "What breaks the shadow of the tube?" The Physics Teacher 36, 542-543 (1998).
    [CrossRef]
  2. B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: an application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000)
    [CrossRef]
  3. D. Grahan-Rowen, "Liquid lenses make a splash," Nat. Photonics Volume sample, 2-4 (2006).
    [CrossRef]
  4. G. Beni and M. A. Tenan, "Dynamics of electrowetting displays," J. Appl. Phys. 52,6011-6015 (1981).
    [CrossRef]
  5. R. Hayes and D. J. Feenstra, "Video-Speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
    [CrossRef] [PubMed]
  6. S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85,1128-1130 (2004).
    [CrossRef]
  7. L. Dong, A. K. Argawal. D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
    [CrossRef] [PubMed]
  8. C. C. Cheng and J. A. Yeh, "Dieletrically actuated liquid lens," Opt. Express 15, 7140-7145 (2007).
    [CrossRef] [PubMed]
  9. D. Psaltis, S. R. Quache, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  10. F. Mugele and S. Herminghaus, "Electrostatic stabilization of fluid microstructures," Appl. Phys. Lett. 81,2303-2305 (2002).
    [CrossRef]
  11. T. Beerling, "Liquid metal switch employing an electrically isolated control element," US Patent N. 7,053,323 (2006).
  12. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006).
    [CrossRef]
  13. H. Ren, D. Fox, P. A. Anderson, B. Wu, S.-T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006).
    [CrossRef] [PubMed]
  14. B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
    [CrossRef]
  15. E. Colgate and H. Matsumoto, "An investigation of electrowetting-based micro actuation," J. Vac. Sci. Technol. A 8, 3625-3633 (1990).
    [CrossRef]
  16. A. Sharma and R. Khanna, "Pattern formation in unstable thin liquid films," Phys. Rev. Lett. 81,3463-3466 (1998).
    [CrossRef]
  17. D. E. Kataoka and S. M. Troian, "Patterning liquid flow on the microscopic scale," Nature 402, 794-797 (1999).
    [CrossRef]
  18. R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, "Wetting morphologies at microstructured surfaces," PNAS 102, 1848-1852 (2005).
    [CrossRef] [PubMed]
  19. H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002).
    [CrossRef]
  20. D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, "Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification," Appl. Phys. Lett. 88, 163902-3 (2006).
    [CrossRef]
  21. D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
    [CrossRef]
  22. M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, "Fluid control in multichannel structures by electrocapillary pressure," Sci. 291, 277-280 (2001).
    [CrossRef]
  23. C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, "Electrowetting with electrolytes," Phys. Rev. Lett. 97, 136102-4 (2006).
    [CrossRef] [PubMed]
  24. P. Lazar and H. Riegler, "Reversible self propelled droplet movement: a new driving mechanism," Phys. Rev. Lett. 95, 136103-4 (2005).
    [CrossRef] [PubMed]
  25. F. Mugele and J.-C. Baret, "Electrowetting: from basics to applications," J. Phys. Condens. Matter 17, R705-R774 (2005).
    [CrossRef]
  26. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
    [CrossRef]
  27. R. L. Byer, "Nonlinear Optics and Solid-State Lasers:2000," IEEE J. Sel. Top. Quantum Electron. 6, 911-930 (2000).
    [CrossRef]
  28. F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992).
    [CrossRef]
  29. B. Sun and J. Heikenfeld "Observation and optical implications of oil dewetting patterns in electrowetting displays" J. Micromech. Microeng. 18,025027 (2008)
    [CrossRef]
  30. C. H. Bulmer, W. K. Burns, and S. C. Hiser, "Pyroelectric effects in LiNbO3 channel waveguide devices," Appl. Phys. Lett. 48,1036-1038 (1986).
    [CrossRef]
  31. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
    [CrossRef]
  32. S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. (in press).
  33. K. Nassau, H. J. Levinstein, and G. M. Loiacono, "The domain structure and etching of ferroelectric lithium niobate," Appl. Phys. Lett. 6, 228-229 (1965).
    [CrossRef]
  34. S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, "Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching," Appl. Phys. Lett. 87, 233106-3 (2005).
    [CrossRef]
  35. V. Gopalan and T. E. Mitchell, "In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy," J. Appl. Phys. 85, 2304-2311 (1999).
    [CrossRef]
  36. R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191-203 (1985).
    [CrossRef]
  37. E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Phys. B 383, 171-182 (2006).
    [CrossRef]
  38. B. Rosenblum, P. Bräunlich, and J. P. Carrico, "Thermally stimulated field emission from pyroelectric LiNbO3," Appl. Phys. Lett. 25, 17-19 (1974).
    [CrossRef]
  39. G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, "Electron emission from ferroelectrics," J. Appl. Phys. 88, 6109-6161 (2000).
    [CrossRef]
  40. F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, "Diffuse double layer charging in nonpolar liquids," Appl. Phys. Lett. 91, 182911-3 (2007).
    [CrossRef]
  41. M. G. Lippmann, Ann. Chim. Phys. 5, 494 (1875).
  42. P. Ferraro, S. De Nicola, and G. Coppola, "Digital holography: recent advancements and prospective improvements for applications in microscopy" in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications series B. Javidi ed., (Springer, 2005), pp. 47-84.

2008

B. Sun and J. Heikenfeld "Observation and optical implications of oil dewetting patterns in electrowetting displays" J. Micromech. Microeng. 18,025027 (2008)
[CrossRef]

2007

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, "Diffuse double layer charging in nonpolar liquids," Appl. Phys. Lett. 91, 182911-3 (2007).
[CrossRef]

C. C. Cheng and J. A. Yeh, "Dieletrically actuated liquid lens," Opt. Express 15, 7140-7145 (2007).
[CrossRef] [PubMed]

2006

D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, "Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification," Appl. Phys. Lett. 88, 163902-3 (2006).
[CrossRef]

E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Phys. B 383, 171-182 (2006).
[CrossRef]

L. Dong, A. K. Argawal. D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quache, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006).
[CrossRef]

H. Ren, D. Fox, P. A. Anderson, B. Wu, S.-T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006).
[CrossRef] [PubMed]

C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, "Electrowetting with electrolytes," Phys. Rev. Lett. 97, 136102-4 (2006).
[CrossRef] [PubMed]

2005

P. Lazar and H. Riegler, "Reversible self propelled droplet movement: a new driving mechanism," Phys. Rev. Lett. 95, 136103-4 (2005).
[CrossRef] [PubMed]

F. Mugele and J.-C. Baret, "Electrowetting: from basics to applications," J. Phys. Condens. Matter 17, R705-R774 (2005).
[CrossRef]

R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, "Wetting morphologies at microstructured surfaces," PNAS 102, 1848-1852 (2005).
[CrossRef] [PubMed]

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, "Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching," Appl. Phys. Lett. 87, 233106-3 (2005).
[CrossRef]

2004

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85,1128-1130 (2004).
[CrossRef]

2003

R. Hayes and D. J. Feenstra, "Video-Speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
[CrossRef] [PubMed]

2002

F. Mugele and S. Herminghaus, "Electrostatic stabilization of fluid microstructures," Appl. Phys. Lett. 81,2303-2305 (2002).
[CrossRef]

H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002).
[CrossRef]

2001

M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, "Fluid control in multichannel structures by electrocapillary pressure," Sci. 291, 277-280 (2001).
[CrossRef]

2000

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

R. L. Byer, "Nonlinear Optics and Solid-State Lasers:2000," IEEE J. Sel. Top. Quantum Electron. 6, 911-930 (2000).
[CrossRef]

B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: an application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000)
[CrossRef]

G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, "Electron emission from ferroelectrics," J. Appl. Phys. 88, 6109-6161 (2000).
[CrossRef]

1999

V. Gopalan and T. E. Mitchell, "In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy," J. Appl. Phys. 85, 2304-2311 (1999).
[CrossRef]

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
[CrossRef]

D. E. Kataoka and S. M. Troian, "Patterning liquid flow on the microscopic scale," Nature 402, 794-797 (1999).
[CrossRef]

1998

A. Sharma and R. Khanna, "Pattern formation in unstable thin liquid films," Phys. Rev. Lett. 81,3463-3466 (1998).
[CrossRef]

P. Ferraro, "What breaks the shadow of the tube?" The Physics Teacher 36, 542-543 (1998).
[CrossRef]

1993

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

1992

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992).
[CrossRef]

1990

E. Colgate and H. Matsumoto, "An investigation of electrowetting-based micro actuation," J. Vac. Sci. Technol. A 8, 3625-3633 (1990).
[CrossRef]

1986

C. H. Bulmer, W. K. Burns, and S. C. Hiser, "Pyroelectric effects in LiNbO3 channel waveguide devices," Appl. Phys. Lett. 48,1036-1038 (1986).
[CrossRef]

1985

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

1981

G. Beni and M. A. Tenan, "Dynamics of electrowetting displays," J. Appl. Phys. 52,6011-6015 (1981).
[CrossRef]

1974

B. Rosenblum, P. Bräunlich, and J. P. Carrico, "Thermally stimulated field emission from pyroelectric LiNbO3," Appl. Phys. Lett. 25, 17-19 (1974).
[CrossRef]

1965

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "The domain structure and etching of ferroelectric lithium niobate," Appl. Phys. Lett. 6, 228-229 (1965).
[CrossRef]

1875

M. G. Lippmann, Ann. Chim. Phys. 5, 494 (1875).

Abbott, N. L.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
[CrossRef]

Anderson, P. A.

Argawal, A. K.

L. Dong, A. K. Argawal. D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Aronov, D.

D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, "Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification," Appl. Phys. Lett. 88, 163902-3 (2006).
[CrossRef]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Baret, J.-C.

F. Mugele and J.-C. Baret, "Electrowetting: from basics to applications," J. Phys. Condens. Matter 17, R705-R774 (2005).
[CrossRef]

Beni, G.

G. Beni and M. A. Tenan, "Dynamics of electrowetting displays," J. Appl. Phys. 52,6011-6015 (1981).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: an application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000)
[CrossRef]

Beunis, F.

F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, "Diffuse double layer charging in nonpolar liquids," Appl. Phys. Lett. 91, 182911-3 (2007).
[CrossRef]

Bierlein, J. D.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992).
[CrossRef]

Bindloss, W.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992).
[CrossRef]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Bourim, E. M.

E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Phys. B 383, 171-182 (2006).
[CrossRef]

Bräunlich, P.

B. Rosenblum, P. Bräunlich, and J. P. Carrico, "Thermally stimulated field emission from pyroelectric LiNbO3," Appl. Phys. Lett. 25, 17-19 (1974).
[CrossRef]

Brinkmann, M.

R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, "Wetting morphologies at microstructured surfaces," PNAS 102, 1848-1852 (2005).
[CrossRef] [PubMed]

Bulmer, C. H.

C. H. Bulmer, W. K. Burns, and S. C. Hiser, "Pyroelectric effects in LiNbO3 channel waveguide devices," Appl. Phys. Lett. 48,1036-1038 (1986).
[CrossRef]

Burns, W. K.

C. H. Bulmer, W. K. Burns, and S. C. Hiser, "Pyroelectric effects in LiNbO3 channel waveguide devices," Appl. Phys. Lett. 48,1036-1038 (1986).
[CrossRef]

Byer, R. L.

R. L. Byer, "Nonlinear Optics and Solid-State Lasers:2000," IEEE J. Sel. Top. Quantum Electron. 6, 911-930 (2000).
[CrossRef]

Carrico, J. P.

B. Rosenblum, P. Bräunlich, and J. P. Carrico, "Thermally stimulated field emission from pyroelectric LiNbO3," Appl. Phys. Lett. 25, 17-19 (1974).
[CrossRef]

Chan, M. L.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006).
[CrossRef]

Cheng, C. C.

Cho, S. K.

H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002).
[CrossRef]

Colgate, E.

E. Colgate and H. Matsumoto, "An investigation of electrowetting-based micro actuation," J. Vac. Sci. Technol. A 8, 3625-3633 (1990).
[CrossRef]

Craig, V. S.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
[CrossRef]

Daikhin, L. I.

C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, "Electrowetting with electrolytes," Phys. Rev. Lett. 97, 136102-4 (2006).
[CrossRef] [PubMed]

De Natale, P.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, "Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching," Appl. Phys. Lett. 87, 233106-3 (2005).
[CrossRef]

Dharmatilleke, S.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006).
[CrossRef]

Dong, L.

L. Dong, A. K. Argawal. D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Dunaevsky, A.

G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, "Electron emission from ferroelectrics," J. Appl. Phys. 88, 6109-6161 (2000).
[CrossRef]

Eagerton, F. D.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
[CrossRef]

Feenstra, D. J.

R. Hayes and D. J. Feenstra, "Video-Speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
[CrossRef] [PubMed]

Ferraro, P.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, "Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching," Appl. Phys. Lett. 87, 233106-3 (2005).
[CrossRef]

P. Ferraro, "What breaks the shadow of the tube?" The Physics Teacher 36, 542-543 (1998).
[CrossRef]

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. (in press).

Fox, D.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Gallardo, B. S.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
[CrossRef]

Garrell, R. L.

H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

Gopalan, V.

V. Gopalan and T. E. Mitchell, "In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy," J. Appl. Phys. 85, 2304-2311 (1999).
[CrossRef]

Grilli, S.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, "Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching," Appl. Phys. Lett. 87, 233106-3 (2005).
[CrossRef]

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. (in press).

Gupta, V. K.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
[CrossRef]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Hayes, R.

R. Hayes and D. J. Feenstra, "Video-Speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
[CrossRef] [PubMed]

Heikenfeld, J.

B. Sun and J. Heikenfeld "Observation and optical implications of oil dewetting patterns in electrowetting displays" J. Micromech. Microeng. 18,025027 (2008)
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85,1128-1130 (2004).
[CrossRef]

Herminghaus, S.

F. Mugele and S. Herminghaus, "Electrostatic stabilization of fluid microstructures," Appl. Phys. Lett. 81,2303-2305 (2002).
[CrossRef]

Hiser, S. C.

C. H. Bulmer, W. K. Burns, and S. C. Hiser, "Pyroelectric effects in LiNbO3 channel waveguide devices," Appl. Phys. Lett. 48,1036-1038 (1986).
[CrossRef]

Hsiung, H.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992).
[CrossRef]

Jones, S. C.

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

Jong, L. I.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
[CrossRef]

Karlov, A.

D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, "Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification," Appl. Phys. Lett. 88, 163902-3 (2006).
[CrossRef]

Kataoka, D. E.

D. E. Kataoka and S. M. Troian, "Patterning liquid flow on the microscopic scale," Nature 402, 794-797 (1999).
[CrossRef]

Khanna, R.

A. Sharma and R. Khanna, "Pattern formation in unstable thin liquid films," Phys. Rev. Lett. 81,3463-3466 (1998).
[CrossRef]

Khaw, A. H.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006).
[CrossRef]

Kim, C.-J.

H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002).
[CrossRef]

King, W. P.

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Kornyshev, A. A.

C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, "Electrowetting with electrolytes," Phys. Rev. Lett. 97, 136102-4 (2006).
[CrossRef] [PubMed]

Kramer, E. J.

R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, "Wetting morphologies at microstructured surfaces," PNAS 102, 1848-1852 (2005).
[CrossRef] [PubMed]

Krasik, Y. E.

G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, "Electron emission from ferroelectrics," J. Appl. Phys. 88, 6109-6161 (2000).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85,1128-1130 (2004).
[CrossRef]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Lange, F. F.

R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, "Wetting morphologies at microstructured surfaces," PNAS 102, 1848-1852 (2005).
[CrossRef] [PubMed]

Laurell, F.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992).
[CrossRef]

Lazar, P.

P. Lazar and H. Riegler, "Reversible self propelled droplet movement: a new driving mechanism," Phys. Rev. Lett. 95, 136103-4 (2005).
[CrossRef] [PubMed]

Lee, J.

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

Lee, S.-W.

E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Phys. B 383, 171-182 (2006).
[CrossRef]

Levinstein, H. J.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "The domain structure and etching of ferroelectric lithium niobate," Appl. Phys. Lett. 6, 228-229 (1965).
[CrossRef]

Lipowsky, R.

R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, "Wetting morphologies at microstructured surfaces," PNAS 102, 1848-1852 (2005).
[CrossRef] [PubMed]

Lippmann, M. G.

M. G. Lippmann, Ann. Chim. Phys. 5, 494 (1875).

Loiacono, G. M.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "The domain structure and etching of ferroelectric lithium niobate," Appl. Phys. Lett. 6, 228-229 (1965).
[CrossRef]

Lucas, M.

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Marder, S. R.

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

Marescaux, M.

F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, "Diffuse double layer charging in nonpolar liquids," Appl. Phys. Lett. 91, 182911-3 (2007).
[CrossRef]

Matsumoto, H.

E. Colgate and H. Matsumoto, "An investigation of electrowetting-based micro actuation," J. Vac. Sci. Technol. A 8, 3625-3633 (1990).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Miccio, L.

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. (in press).

Mitchell, T. E.

V. Gopalan and T. E. Mitchell, "In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy," J. Appl. Phys. 85, 2304-2311 (1999).
[CrossRef]

Monroe, C. W.

C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, "Electrowetting with electrolytes," Phys. Rev. Lett. 97, 136102-4 (2006).
[CrossRef] [PubMed]

Moon, C.-W.

E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Phys. B 383, 171-182 (2006).
[CrossRef]

Moon, H.

H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002).
[CrossRef]

Moran, P. M.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006).
[CrossRef]

Mugele, F.

F. Mugele and J.-C. Baret, "Electrowetting: from basics to applications," J. Phys. Condens. Matter 17, R705-R774 (2005).
[CrossRef]

F. Mugele and S. Herminghaus, "Electrostatic stabilization of fluid microstructures," Appl. Phys. Lett. 81,2303-2305 (2002).
[CrossRef]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Nassau, K.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "The domain structure and etching of ferroelectric lithium niobate," Appl. Phys. Lett. 6, 228-229 (1965).
[CrossRef]

Neyts, K.

F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, "Diffuse double layer charging in nonpolar liquids," Appl. Phys. Lett. 91, 182911-3 (2007).
[CrossRef]

Okada, T.

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

Paturzo, M.

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. (in press).

Peseux, J.

B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: an application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000)
[CrossRef]

Prinse, M. W. J.

M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, "Fluid control in multichannel structures by electrocapillary pressure," Sci. 291, 277-280 (2001).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quache, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Quache, S. R.

D. Psaltis, S. R. Quache, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Ren, H.

Riedo, E.

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

Riegler, H.

P. Lazar and H. Riegler, "Reversible self propelled droplet movement: a new driving mechanism," Phys. Rev. Lett. 95, 136103-4 (2005).
[CrossRef] [PubMed]

Rodriguez, I.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006).
[CrossRef]

Roelofs, M. G.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992).
[CrossRef]

Rosenblum, B.

B. Rosenblum, P. Bräunlich, and J. P. Carrico, "Thermally stimulated field emission from pyroelectric LiNbO3," Appl. Phys. Lett. 25, 17-19 (1974).
[CrossRef]

Rosenman, G.

D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, "Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification," Appl. Phys. Lett. 88, 163902-3 (2006).
[CrossRef]

G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, "Electron emission from ferroelectrics," J. Appl. Phys. 88, 6109-6161 (2000).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Seemann, R.

R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, "Wetting morphologies at microstructured surfaces," PNAS 102, 1848-1852 (2005).
[CrossRef] [PubMed]

Shah, R. R.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
[CrossRef]

Sharma, A.

A. Sharma and R. Khanna, "Pattern formation in unstable thin liquid films," Phys. Rev. Lett. 81,3463-3466 (1998).
[CrossRef]

Shashkin, A.

D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, "Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification," Appl. Phys. Lett. 88, 163902-3 (2006).
[CrossRef]

Shur, D.

G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, "Electron emission from ferroelectrics," J. Appl. Phys. 88, 6109-6161 (2000).
[CrossRef]

Strubbe, F.

F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, "Diffuse double layer charging in nonpolar liquids," Appl. Phys. Lett. 91, 182911-3 (2007).
[CrossRef]

Sun, B.

B. Sun and J. Heikenfeld "Observation and optical implications of oil dewetting patterns in electrowetting displays" J. Micromech. Microeng. 18,025027 (2008)
[CrossRef]

Suna, A.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992).
[CrossRef]

Szoszkiewicz, R.

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

Tan, K. W.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006).
[CrossRef]

Tenan, M. A.

G. Beni and M. A. Tenan, "Dynamics of electrowetting displays," J. Appl. Phys. 52,6011-6015 (1981).
[CrossRef]

Tiribilli, B.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, "Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching," Appl. Phys. Lett. 87, 233106-3 (2005).
[CrossRef]

Troian, S. M.

D. E. Kataoka and S. M. Troian, "Patterning liquid flow on the microscopic scale," Nature 402, 794-797 (1999).
[CrossRef]

Urbakh, M.

C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, "Electrowetting with electrolytes," Phys. Rev. Lett. 97, 136102-4 (2006).
[CrossRef] [PubMed]

Vassalli, M.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, "Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching," Appl. Phys. Lett. 87, 233106-3 (2005).
[CrossRef]

Verschueren, A. R. M.

F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, "Diffuse double layer charging in nonpolar liquids," Appl. Phys. Lett. 91, 182911-3 (2007).
[CrossRef]

Wang, D. B.

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Weekamp, J. W.

M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, "Fluid control in multichannel structures by electrocapillary pressure," Sci. 291, 277-280 (2001).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

Welters, W. J. J.

M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, "Fluid control in multichannel structures by electrocapillary pressure," Sci. 291, 277-280 (2001).
[CrossRef]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Wu, B.

Wu, S.-T.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quache, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Yeh, J. A.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Yoo, I. K.

E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Phys. B 383, 171-182 (2006).
[CrossRef]

Ann. Chim. Phys.

M. G. Lippmann, Ann. Chim. Phys. 5, 494 (1875).

Appl. Phys. A

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

Appl. Phys. Lett.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "The domain structure and etching of ferroelectric lithium niobate," Appl. Phys. Lett. 6, 228-229 (1965).
[CrossRef]

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, "Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching," Appl. Phys. Lett. 87, 233106-3 (2005).
[CrossRef]

B. Rosenblum, P. Bräunlich, and J. P. Carrico, "Thermally stimulated field emission from pyroelectric LiNbO3," Appl. Phys. Lett. 25, 17-19 (1974).
[CrossRef]

F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, "Diffuse double layer charging in nonpolar liquids," Appl. Phys. Lett. 91, 182911-3 (2007).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85,1128-1130 (2004).
[CrossRef]

D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, "Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification," Appl. Phys. Lett. 88, 163902-3 (2006).
[CrossRef]

D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007).
[CrossRef]

C. H. Bulmer, W. K. Burns, and S. C. Hiser, "Pyroelectric effects in LiNbO3 channel waveguide devices," Appl. Phys. Lett. 48,1036-1038 (1986).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

F. Mugele and S. Herminghaus, "Electrostatic stabilization of fluid microstructures," Appl. Phys. Lett. 81,2303-2305 (2002).
[CrossRef]

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006).
[CrossRef]

Eur. Phys. J. E

B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: an application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).
[CrossRef]

R. L. Byer, "Nonlinear Optics and Solid-State Lasers:2000," IEEE J. Sel. Top. Quantum Electron. 6, 911-930 (2000).
[CrossRef]

J. Appl. Phys.

F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992).
[CrossRef]

H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002).
[CrossRef]

G. Beni and M. A. Tenan, "Dynamics of electrowetting displays," J. Appl. Phys. 52,6011-6015 (1981).
[CrossRef]

G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, "Electron emission from ferroelectrics," J. Appl. Phys. 88, 6109-6161 (2000).
[CrossRef]

V. Gopalan and T. E. Mitchell, "In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy," J. Appl. Phys. 85, 2304-2311 (1999).
[CrossRef]

J. Micromech. Microeng.

B. Sun and J. Heikenfeld "Observation and optical implications of oil dewetting patterns in electrowetting displays" J. Micromech. Microeng. 18,025027 (2008)
[CrossRef]

J. Phys. Condens. Matter

F. Mugele and J.-C. Baret, "Electrowetting: from basics to applications," J. Phys. Condens. Matter 17, R705-R774 (2005).
[CrossRef]

J. Vac. Sci. Technol. A

E. Colgate and H. Matsumoto, "An investigation of electrowetting-based micro actuation," J. Vac. Sci. Technol. A 8, 3625-3633 (1990).
[CrossRef]

Meas. Sci. Technol.

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. (in press).

Nature

D. E. Kataoka and S. M. Troian, "Patterning liquid flow on the microscopic scale," Nature 402, 794-797 (1999).
[CrossRef]

R. Hayes and D. J. Feenstra, "Video-Speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
[CrossRef] [PubMed]

L. Dong, A. K. Argawal. D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quache, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Opt. Express

Phys. B

E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Phys. B 383, 171-182 (2006).
[CrossRef]

Phys. Rev. Lett.

A. Sharma and R. Khanna, "Pattern formation in unstable thin liquid films," Phys. Rev. Lett. 81,3463-3466 (1998).
[CrossRef]

C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, "Electrowetting with electrolytes," Phys. Rev. Lett. 97, 136102-4 (2006).
[CrossRef] [PubMed]

P. Lazar and H. Riegler, "Reversible self propelled droplet movement: a new driving mechanism," Phys. Rev. Lett. 95, 136103-4 (2005).
[CrossRef] [PubMed]

PNAS

R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, "Wetting morphologies at microstructured surfaces," PNAS 102, 1848-1852 (2005).
[CrossRef] [PubMed]

Sci.

B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999).
[CrossRef]

M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, "Fluid control in multichannel structures by electrocapillary pressure," Sci. 291, 277-280 (2001).
[CrossRef]

The Physics Teacher

P. Ferraro, "What breaks the shadow of the tube?" The Physics Teacher 36, 542-543 (1998).
[CrossRef]

Other

T. Beerling, "Liquid metal switch employing an electrically isolated control element," US Patent N. 7,053,323 (2006).

D. Grahan-Rowen, "Liquid lenses make a splash," Nat. Photonics Volume sample, 2-4 (2006).
[CrossRef]

P. Ferraro, S. De Nicola, and G. Coppola, "Digital holography: recent advancements and prospective improvements for applications in microscopy" in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications series B. Javidi ed., (Springer, 2005), pp. 47-84.

Supplementary Material (3)

» Media 1: MOV (4083 KB)     
» Media 2: MOV (3408 KB)     
» Media 3: MOV (4517 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Optical microscope image of two PPLN samples with a square array of reversed domains. The period of the structures is around 200 µm. A different mask was used for the two samples.

Fig. 2.
Fig. 2.

Optical microscope movies of the oil coated sample A (a) under heating [3.3MB] and (b) cooling process [4.4MB]. [Media 2] [Media 3]

Fig. 3.
Fig. 3.

Schematic view of the PPLN sample cross section with the charge distribution exhibited (a) at the equilibrium state; (b) in case of heating (top) and (bottom) cooling process.

Fig. 4.
Fig. 4.

(a). Schematic view of the sample cross section with the simulated electric potential distribution generated pyroelectrically; (b) (top) surface tension profile and (bottom) the schematic view of the corresponding oil film topography. The black arrows indicate the orientation of the spontaneous polarization.

Fig. 5.
Fig. 5.

Schematic view of the interferometric configuration. A sequence of digital holograms have been recorded on the CCD plane. An additional lens was used (not shown in the figure to simplify the drawing) and located between the lens-array and the CCD plane to magnify the image of the lens array.

Fig. 6.
Fig. 6.

Movie [4MB] of the evolving two-dimensional distribution of the wrapped phase map, modulo 2π, corresponding to 3×4 lens elements on the incoming collimated beam, during cooling in case of the sample B. The phase map was reconstructed at a distance of 156 mm. [Media 1]

Fig. 7.
Fig. 7.

Unwrapped phase map corresponding to a portion of the image in Fig. 6 for a fixed temperature during cooling.

Fig. 8.
Fig. 8.

(a). Phase profiles of the transmitted wavefront calculated for different frames during cooling; (b) focal length values calculated as function of time during the cooling process.

Fig. 9.
Fig. 9.

Optical microscope images of the target “8” observed through the microlens array at two different focal planes imaging the target (a) through the region outside the lenses and (b) through the up-right microlens, where the focusing capability of the microlenses is clearly visible.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ sl + γ lg cos ϑ = γ sg
γ sl ( V ) = γ sl 0 1 2 c V 2
Φ ( x , y ) = 2 π λ ( x 2 + y 2 ) 2 f

Metrics