B. Sun and J. Heikenfeld “Observation and optical implications of oil dewetting patterns in electrowetting displays” J. Micromech. Microeng. 18, 025027 (2008)
[Crossref]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, “Diffuse double layer charging in nonpolar liquids,” Appl. Phys. Lett. 91, 182911-3 (2007).
[Crossref]
C. C. Cheng and J. A. Yeh, “Dieletrically actuated liquid lens,” Opt. Express 15, 7140–7145 (2007).
[Crossref]
[PubMed]
D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, “Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification,” Appl. Phys. Lett. 88, 163902-3 (2006).
[Crossref]
E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, “Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals,” Phys. B 383, 171–182 (2006).
[Crossref]
L. Dong, A. K. Argawal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuliresponsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]
[PubMed]
D. Psaltis, S. R. Quache, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120-3 (2006).
[Crossref]
H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[Crossref]
[PubMed]
C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, “Electrowetting with electrolytes,” Phys. Rev. Lett. 97, 136102-4 (2006).
[Crossref]
[PubMed]
P. Lazar and H. Riegler, “Reversible self propelled droplet movement: a new driving mechanism,” Phys. Rev. Lett. 95, 136103-4 (2005).
[Crossref]
[PubMed]
F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[Crossref]
R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, “Wetting morphologies at microstructured surfaces,” PNAS 102, 1848–1852 (2005).
[Crossref]
[PubMed]
S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett. 87, 233106-3 (2005).
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]
R. Hayes and D. J. Feenstra, “Video-Speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[Crossref]
[PubMed]
F. Mugele and S. Herminghaus, “Electrostatic stabilization of fluid microstructures,” Appl. Phys. Lett. 81, 2303–2305 (2002).
[Crossref]
H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys. 92, 4080–4087 (2002).
[Crossref]
M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, “Fluid control in multichannel structures by electrocapillary pressure,” Sci. 291, 277–280 (2001).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
R. L. Byer, “Nonlinear Optics and Solid-State Lasers:2000,” IEEE J. Sel. Top. Quantum Electron. 6, 911–930 (2000).
[Crossref]
B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000)
[Crossref]
G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, “Electron emission from ferroelectrics,” J. Appl. Phys. 88, 6109–6161 (2000).
[Crossref]
V. Gopalan and T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85, 2304–2311 (1999).
[Crossref]
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Sci. 283, 57–60 (1999).
[Crossref]
D. E. Kataoka and S. M. Troian, “Patterning liquid flow on the microscopic scale,” Nature 402, 794–797 (1999).
[Crossref]
A. Sharma and R. Khanna, “Pattern formation in unstable thin liquid films,” Phys. Rev. Lett. 81, 3463–3466 (1998).
[Crossref]
P. Ferraro, “What breaks the shadow of the tube?” The Physics Teacher 36, 542–543 (1998).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTP waveguides,” J. Appl. Phys. 71, 4664–4670 (1992).
[Crossref]
E. Colgate and H. Matsumoto, “An investigation of electrowetting-based micro actuation,” J. Vac. Sci. Technol. A 8, 3625–3633 (1990).
[Crossref]
C. H. Bulmer, W. K. Burns, and S. C. Hiser, “Pyroelectric effects in LiNbO3 channel waveguide devices,” Appl. Phys. Lett. 48, 1036–1038 (1986).
[Crossref]
R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]
G. Beni and M. A. Tenan, “Dynamics of electrowetting displays,” J. Appl. Phys. 52, 6011–6015 (1981).
[Crossref]
B. Rosenblum, P. Bräunlich, and J. P. Carrico, “Thermally stimulated field emission from pyroelectric LiNbO3,” Appl. Phys. Lett. 25, 17–19 (1974).
[Crossref]
K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Sci. 283, 57–60 (1999).
[Crossref]
L. Dong, A. K. Argawal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuliresponsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]
[PubMed]
D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, “Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification,” Appl. Phys. Lett. 88, 163902-3 (2006).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[Crossref]
L. Dong, A. K. Argawal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuliresponsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]
[PubMed]
T. Beerling, “Liquid metal switch employing an electrically isolated control element,” US Patent N. 7,053,323 (2006).
G. Beni and M. A. Tenan, “Dynamics of electrowetting displays,” J. Appl. Phys. 52, 6011–6015 (1981).
[Crossref]
B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000)
[Crossref]
F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, “Diffuse double layer charging in nonpolar liquids,” Appl. Phys. Lett. 91, 182911-3 (2007).
[Crossref]
F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTP waveguides,” J. Appl. Phys. 71, 4664–4670 (1992).
[Crossref]
F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTP waveguides,” J. Appl. Phys. 71, 4664–4670 (1992).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, “Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals,” Phys. B 383, 171–182 (2006).
[Crossref]
B. Rosenblum, P. Bräunlich, and J. P. Carrico, “Thermally stimulated field emission from pyroelectric LiNbO3,” Appl. Phys. Lett. 25, 17–19 (1974).
[Crossref]
R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, “Wetting morphologies at microstructured surfaces,” PNAS 102, 1848–1852 (2005).
[Crossref]
[PubMed]
C. H. Bulmer, W. K. Burns, and S. C. Hiser, “Pyroelectric effects in LiNbO3 channel waveguide devices,” Appl. Phys. Lett. 48, 1036–1038 (1986).
[Crossref]
C. H. Bulmer, W. K. Burns, and S. C. Hiser, “Pyroelectric effects in LiNbO3 channel waveguide devices,” Appl. Phys. Lett. 48, 1036–1038 (1986).
[Crossref]
R. L. Byer, “Nonlinear Optics and Solid-State Lasers:2000,” IEEE J. Sel. Top. Quantum Electron. 6, 911–930 (2000).
[Crossref]
B. Rosenblum, P. Bräunlich, and J. P. Carrico, “Thermally stimulated field emission from pyroelectric LiNbO3,” Appl. Phys. Lett. 25, 17–19 (1974).
[Crossref]
P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120-3 (2006).
[Crossref]
H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys. 92, 4080–4087 (2002).
[Crossref]
E. Colgate and H. Matsumoto, “An investigation of electrowetting-based micro actuation,” J. Vac. Sci. Technol. A 8, 3625–3633 (1990).
[Crossref]
P. Ferraro, S. De Nicola, and G. Coppola, “Digital holography: recent advancements and prospective improvements for applications in microscopy” in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications seriesB. Javidi ed., (Springer, 2005), pp. 47–84.
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Sci. 283, 57–60 (1999).
[Crossref]
C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, “Electrowetting with electrolytes,” Phys. Rev. Lett. 97, 136102-4 (2006).
[Crossref]
[PubMed]
S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett. 87, 233106-3 (2005).
[Crossref]
P. Ferraro, S. De Nicola, and G. Coppola, “Digital holography: recent advancements and prospective improvements for applications in microscopy” in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications seriesB. Javidi ed., (Springer, 2005), pp. 47–84.
P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120-3 (2006).
[Crossref]
L. Dong, A. K. Argawal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuliresponsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]
[PubMed]
G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, “Electron emission from ferroelectrics,” J. Appl. Phys. 88, 6109–6161 (2000).
[Crossref]
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Sci. 283, 57–60 (1999).
[Crossref]
R. Hayes and D. J. Feenstra, “Video-Speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[Crossref]
[PubMed]
S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett. 87, 233106-3 (2005).
[Crossref]
P. Ferraro, “What breaks the shadow of the tube?” The Physics Teacher 36, 542–543 (1998).
[Crossref]
P. Ferraro, S. De Nicola, and G. Coppola, “Digital holography: recent advancements and prospective improvements for applications in microscopy” in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications seriesB. Javidi ed., (Springer, 2005), pp. 47–84.
S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. (in press).
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Sci. 283, 57–60 (1999).
[Crossref]
H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys. 92, 4080–4087 (2002).
[Crossref]
R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]
V. Gopalan and T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85, 2304–2311 (1999).
[Crossref]
D. Grahan-Rowen, “Liquid lenses make a splash,” Nat. PhotonicsVolume sample, 2–4 (2006).
[Crossref]
S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett. 87, 233106-3 (2005).
[Crossref]
S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. (in press).
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Sci. 283, 57–60 (1999).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
R. Hayes and D. J. Feenstra, “Video-Speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[Crossref]
[PubMed]
B. Sun and J. Heikenfeld “Observation and optical implications of oil dewetting patterns in electrowetting displays” J. Micromech. Microeng. 18, 025027 (2008)
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]
F. Mugele and S. Herminghaus, “Electrostatic stabilization of fluid microstructures,” Appl. Phys. Lett. 81, 2303–2305 (2002).
[Crossref]
C. H. Bulmer, W. K. Burns, and S. C. Hiser, “Pyroelectric effects in LiNbO3 channel waveguide devices,” Appl. Phys. Lett. 48, 1036–1038 (1986).
[Crossref]
F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTP waveguides,” J. Appl. Phys. 71, 4664–4670 (1992).
[Crossref]
L. Dong, A. K. Argawal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuliresponsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]
[PubMed]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Sci. 283, 57–60 (1999).
[Crossref]
D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, “Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification,” Appl. Phys. Lett. 88, 163902-3 (2006).
[Crossref]
D. E. Kataoka and S. M. Troian, “Patterning liquid flow on the microscopic scale,” Nature 402, 794–797 (1999).
[Crossref]
A. Sharma and R. Khanna, “Pattern formation in unstable thin liquid films,” Phys. Rev. Lett. 81, 3463–3466 (1998).
[Crossref]
P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120-3 (2006).
[Crossref]
H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys. 92, 4080–4087 (2002).
[Crossref]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, “Electrowetting with electrolytes,” Phys. Rev. Lett. 97, 136102-4 (2006).
[Crossref]
[PubMed]
R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, “Wetting morphologies at microstructured surfaces,” PNAS 102, 1848–1852 (2005).
[Crossref]
[PubMed]
G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, “Electron emission from ferroelectrics,” J. Appl. Phys. 88, 6109–6161 (2000).
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, “Wetting morphologies at microstructured surfaces,” PNAS 102, 1848–1852 (2005).
[Crossref]
[PubMed]
F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTP waveguides,” J. Appl. Phys. 71, 4664–4670 (1992).
[Crossref]
P. Lazar and H. Riegler, “Reversible self propelled droplet movement: a new driving mechanism,” Phys. Rev. Lett. 95, 136103-4 (2005).
[Crossref]
[PubMed]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, “Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals,” Phys. B 383, 171–182 (2006).
[Crossref]
K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]
R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, “Wetting morphologies at microstructured surfaces,” PNAS 102, 1848–1852 (2005).
[Crossref]
[PubMed]
M. G. Lippmann, Ann. Chim. Phys.5, 494 (1875).
K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, “Diffuse double layer charging in nonpolar liquids,” Appl. Phys. Lett. 91, 182911-3 (2007).
[Crossref]
E. Colgate and H. Matsumoto, “An investigation of electrowetting-based micro actuation,” J. Vac. Sci. Technol. A 8, 3625–3633 (1990).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. (in press).
V. Gopalan and T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85, 2304–2311 (1999).
[Crossref]
C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, “Electrowetting with electrolytes,” Phys. Rev. Lett. 97, 136102-4 (2006).
[Crossref]
[PubMed]
E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, “Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals,” Phys. B 383, 171–182 (2006).
[Crossref]
H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys. 92, 4080–4087 (2002).
[Crossref]
P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120-3 (2006).
[Crossref]
F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[Crossref]
F. Mugele and S. Herminghaus, “Electrostatic stabilization of fluid microstructures,” Appl. Phys. Lett. 81, 2303–2305 (2002).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]
F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, “Diffuse double layer charging in nonpolar liquids,” Appl. Phys. Lett. 91, 182911-3 (2007).
[Crossref]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. (in press).
B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000)
[Crossref]
M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, “Fluid control in multichannel structures by electrocapillary pressure,” Sci. 291, 277–280 (2001).
[Crossref]
D. Psaltis, S. R. Quache, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
D. Psaltis, S. R. Quache, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
P. Lazar and H. Riegler, “Reversible self propelled droplet movement: a new driving mechanism,” Phys. Rev. Lett. 95, 136103-4 (2005).
[Crossref]
[PubMed]
P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120-3 (2006).
[Crossref]
F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTP waveguides,” J. Appl. Phys. 71, 4664–4670 (1992).
[Crossref]
B. Rosenblum, P. Bräunlich, and J. P. Carrico, “Thermally stimulated field emission from pyroelectric LiNbO3,” Appl. Phys. Lett. 25, 17–19 (1974).
[Crossref]
D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, “Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification,” Appl. Phys. Lett. 88, 163902-3 (2006).
[Crossref]
G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, “Electron emission from ferroelectrics,” J. Appl. Phys. 88, 6109–6161 (2000).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, “Wetting morphologies at microstructured surfaces,” PNAS 102, 1848–1852 (2005).
[Crossref]
[PubMed]
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Sci. 283, 57–60 (1999).
[Crossref]
A. Sharma and R. Khanna, “Pattern formation in unstable thin liquid films,” Phys. Rev. Lett. 81, 3463–3466 (1998).
[Crossref]
D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, “Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification,” Appl. Phys. Lett. 88, 163902-3 (2006).
[Crossref]
G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, “Electron emission from ferroelectrics,” J. Appl. Phys. 88, 6109–6161 (2000).
[Crossref]
F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, “Diffuse double layer charging in nonpolar liquids,” Appl. Phys. Lett. 91, 182911-3 (2007).
[Crossref]
B. Sun and J. Heikenfeld “Observation and optical implications of oil dewetting patterns in electrowetting displays” J. Micromech. Microeng. 18, 025027 (2008)
[Crossref]
F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTP waveguides,” J. Appl. Phys. 71, 4664–4670 (1992).
[Crossref]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120-3 (2006).
[Crossref]
G. Beni and M. A. Tenan, “Dynamics of electrowetting displays,” J. Appl. Phys. 52, 6011–6015 (1981).
[Crossref]
S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett. 87, 233106-3 (2005).
[Crossref]
D. E. Kataoka and S. M. Troian, “Patterning liquid flow on the microscopic scale,” Nature 402, 794–797 (1999).
[Crossref]
C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, “Electrowetting with electrolytes,” Phys. Rev. Lett. 97, 136102-4 (2006).
[Crossref]
[PubMed]
S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett. 87, 233106-3 (2005).
[Crossref]
F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, “Diffuse double layer charging in nonpolar liquids,” Appl. Phys. Lett. 91, 182911-3 (2007).
[Crossref]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, “Fluid control in multichannel structures by electrocapillary pressure,” Sci. 291, 277–280 (2001).
[Crossref]
R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]
M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, “Fluid control in multichannel structures by electrocapillary pressure,” Sci. 291, 277–280 (2001).
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
D. Psaltis, S. R. Quache, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, “Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals,” Phys. B 383, 171–182 (2006).
[Crossref]
R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]
K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]
S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett. 87, 233106-3 (2005).
[Crossref]
B. Rosenblum, P. Bräunlich, and J. P. Carrico, “Thermally stimulated field emission from pyroelectric LiNbO3,” Appl. Phys. Lett. 25, 17–19 (1974).
[Crossref]
F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, “Diffuse double layer charging in nonpolar liquids,” Appl. Phys. Lett. 91, 182911-3 (2007).
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]
D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, “Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification,” Appl. Phys. Lett. 88, 163902-3 (2006).
[Crossref]
D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, “Local wettability modification by thermochemical nanolithography with write-read-overwrite capability,” Appl. Phys. Lett. 91, 243104-3 (2007).
[Crossref]
C. H. Bulmer, W. K. Burns, and S. C. Hiser, “Pyroelectric effects in LiNbO3 channel waveguide devices,” Appl. Phys. Lett. 48, 1036–1038 (1986).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
F. Mugele and S. Herminghaus, “Electrostatic stabilization of fluid microstructures,” Appl. Phys. Lett. 81, 2303–2305 (2002).
[Crossref]
P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120-3 (2006).
[Crossref]
B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000)
[Crossref]
E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]
R. L. Byer, “Nonlinear Optics and Solid-State Lasers:2000,” IEEE J. Sel. Top. Quantum Electron. 6, 911–930 (2000).
[Crossref]
F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTP waveguides,” J. Appl. Phys. 71, 4664–4670 (1992).
[Crossref]
H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys. 92, 4080–4087 (2002).
[Crossref]
G. Beni and M. A. Tenan, “Dynamics of electrowetting displays,” J. Appl. Phys. 52, 6011–6015 (1981).
[Crossref]
G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, “Electron emission from ferroelectrics,” J. Appl. Phys. 88, 6109–6161 (2000).
[Crossref]
V. Gopalan and T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85, 2304–2311 (1999).
[Crossref]
B. Sun and J. Heikenfeld “Observation and optical implications of oil dewetting patterns in electrowetting displays” J. Micromech. Microeng. 18, 025027 (2008)
[Crossref]
F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[Crossref]
E. Colgate and H. Matsumoto, “An investigation of electrowetting-based micro actuation,” J. Vac. Sci. Technol. A 8, 3625–3633 (1990).
[Crossref]
D. E. Kataoka and S. M. Troian, “Patterning liquid flow on the microscopic scale,” Nature 402, 794–797 (1999).
[Crossref]
R. Hayes and D. J. Feenstra, “Video-Speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[Crossref]
[PubMed]
L. Dong, A. K. Argawal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuliresponsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref]
[PubMed]
D. Psaltis, S. R. Quache, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[Crossref]
[PubMed]
C. C. Cheng and J. A. Yeh, “Dieletrically actuated liquid lens,” Opt. Express 15, 7140–7145 (2007).
[Crossref]
[PubMed]
E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, “Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals,” Phys. B 383, 171–182 (2006).
[Crossref]
A. Sharma and R. Khanna, “Pattern formation in unstable thin liquid films,” Phys. Rev. Lett. 81, 3463–3466 (1998).
[Crossref]
C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, “Electrowetting with electrolytes,” Phys. Rev. Lett. 97, 136102-4 (2006).
[Crossref]
[PubMed]
P. Lazar and H. Riegler, “Reversible self propelled droplet movement: a new driving mechanism,” Phys. Rev. Lett. 95, 136103-4 (2005).
[Crossref]
[PubMed]
R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, “Wetting morphologies at microstructured surfaces,” PNAS 102, 1848–1852 (2005).
[Crossref]
[PubMed]
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Sci. 283, 57–60 (1999).
[Crossref]
M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, “Fluid control in multichannel structures by electrocapillary pressure,” Sci. 291, 277–280 (2001).
[Crossref]
P. Ferraro, “What breaks the shadow of the tube?” The Physics Teacher 36, 542–543 (1998).
[Crossref]
D. Grahan-Rowen, “Liquid lenses make a splash,” Nat. PhotonicsVolume sample, 2–4 (2006).
[Crossref]
M. G. Lippmann, Ann. Chim. Phys.5, 494 (1875).
P. Ferraro, S. De Nicola, and G. Coppola, “Digital holography: recent advancements and prospective improvements for applications in microscopy” in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications seriesB. Javidi ed., (Springer, 2005), pp. 47–84.
S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. (in press).
T. Beerling, “Liquid metal switch employing an electrically isolated control element,” US Patent N. 7,053,323 (2006).