Abstract

The energy required to generate ultrashort pulses with petawatt peak power from a Ti:sapphire laser system is a few tens of joules. To achieve this, the final amplifier must have a gain region of around 5 cm diameter that is uniformly pumped at high fluence. The high level of amplified spontaneous emission (ASE) in such an amplifier will seriously degrade its performance unless care is taken to minimise the transverse gain and the internal reflections from the crystal edges. In developing the amplifiers for the Astra Gemini laser system, we have combined the techniques of beam homogenisation and double-pass pumping of a lightly-doped crystal with a new index-matched absorber liquid. Our results demonstrate that this combined approach successfully overcomes the problem of gain depletion by ASE in a high-energyTi:sapphire amplifier.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, "0.85-PW, 33-fs Ti : sapphire laser," Opt. Lett. 28, 1594-1596 (2003).
    [CrossRef]
  2. F. Plé, M. Pittman, G. Jamelot, and J. P. Chambaret, "Design and demonstration of a high-energy booster amplifier for a high-repetition rate petawatt class laser system," Opt. Lett. 32, 238-240 (2007).
    [CrossRef] [PubMed]
  3. X. Liang, Y. Leng, C. Wang, C. Li, L. Lin, B. Zhao, Y. Jiang, X. Lu, M. Hu, C. Zhang, H. Lu, D. Yin, Y. Jiang, X. Lu, H. Wei, J. Zhu, R. Li, and Z. Xu, "Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier," Opt. Express 15, 15335-15341 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-23-15335.
    [CrossRef] [PubMed]
  4. W. Koechner, Solid-State Laser Engineering (Springer, Berlin, Heidelberg, 1996).
  5. M. P. Kalachnikov, V. Karpov, H. Schonnagel, and W. Sandner, "100-terawatt titanium-sapphire laser system," Laser Physics 12, 368-374 (2002).
  6. C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate," J. Opt. A 1, 398-403 (1999).
    [CrossRef]
  7. S. A. Akhmanov, A. I. Kovrigin, M. M. Strukov, and R. V. Khokhlov, "Frequency dependence of threshold of optical breakdown in air," Jetp Letters-USSR 1, 25-29 (1965)
  8. J. A. Glaze, S. Guch, and J. B. Trenholme, "Parasitic suppression in large aperture Nd:glass disk laser amplifiers," Appl. Opt. 13, 2808- (1974)
    [CrossRef] [PubMed]
  9. F. G. Patterson, J. Bonlie, D. Price, and B. White, "Suppression of parasitic lasing in large-aperture Ti : sapphire laser amplifiers," Opt. Lett. 24, 963-965 (1999)
    [CrossRef]
  10. M. E. Graham, B. I. Davis, and D. V. Keller, "Immersion liquids for ruby lasers," Appl. Opt. 4, 613-615 (1965).
    [CrossRef]
  11. F. Plé, M. Pittman, F. Canova, and G. Jamelot, "Analysis and Solutions for Parasitic Lasing in Petawatt and Multi-Petawatt Ti:sapphire Laser Systems," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWD4.

2007

2003

2002

M. P. Kalachnikov, V. Karpov, H. Schonnagel, and W. Sandner, "100-terawatt titanium-sapphire laser system," Laser Physics 12, 368-374 (2002).

1999

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate," J. Opt. A 1, 398-403 (1999).
[CrossRef]

F. G. Patterson, J. Bonlie, D. Price, and B. White, "Suppression of parasitic lasing in large-aperture Ti : sapphire laser amplifiers," Opt. Lett. 24, 963-965 (1999)
[CrossRef]

1974

1965

S. A. Akhmanov, A. I. Kovrigin, M. M. Strukov, and R. V. Khokhlov, "Frequency dependence of threshold of optical breakdown in air," Jetp Letters-USSR 1, 25-29 (1965)

M. E. Graham, B. I. Davis, and D. V. Keller, "Immersion liquids for ruby lasers," Appl. Opt. 4, 613-615 (1965).
[CrossRef]

Akahane, Y.

Akhmanov, S. A.

S. A. Akhmanov, A. I. Kovrigin, M. M. Strukov, and R. V. Khokhlov, "Frequency dependence of threshold of optical breakdown in air," Jetp Letters-USSR 1, 25-29 (1965)

Aoyama, M.

Bonlie, J.

Chambaret, J. P.

Davis, B. I.

Glaze, J. A.

Graham, M. E.

Guch, S.

Hu, M.

Inoue, N.

Jamelot, G.

Jiang, Y.

Kalachnikov, M. P.

M. P. Kalachnikov, V. Karpov, H. Schonnagel, and W. Sandner, "100-terawatt titanium-sapphire laser system," Laser Physics 12, 368-374 (2002).

Karpov, V.

M. P. Kalachnikov, V. Karpov, H. Schonnagel, and W. Sandner, "100-terawatt titanium-sapphire laser system," Laser Physics 12, 368-374 (2002).

Keller, D. V.

Khokhlov, R. V.

S. A. Akhmanov, A. I. Kovrigin, M. M. Strukov, and R. V. Khokhlov, "Frequency dependence of threshold of optical breakdown in air," Jetp Letters-USSR 1, 25-29 (1965)

Kiriyama, H.

Kopp, C.

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate," J. Opt. A 1, 398-403 (1999).
[CrossRef]

Kovrigin, A. I.

S. A. Akhmanov, A. I. Kovrigin, M. M. Strukov, and R. V. Khokhlov, "Frequency dependence of threshold of optical breakdown in air," Jetp Letters-USSR 1, 25-29 (1965)

Leng, Y.

Li, C.

Li, R.

Liang, X.

Lin, L.

Lu, H.

Lu, X.

Ma, J.

Meyrueis, P.

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate," J. Opt. A 1, 398-403 (1999).
[CrossRef]

Patterson, F. G.

Pittman, M.

Plé, F.

Price, D.

Ravel, L.

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate," J. Opt. A 1, 398-403 (1999).
[CrossRef]

Sandner, W.

M. P. Kalachnikov, V. Karpov, H. Schonnagel, and W. Sandner, "100-terawatt titanium-sapphire laser system," Laser Physics 12, 368-374 (2002).

Schonnagel, H.

M. P. Kalachnikov, V. Karpov, H. Schonnagel, and W. Sandner, "100-terawatt titanium-sapphire laser system," Laser Physics 12, 368-374 (2002).

Strukov, M. M.

S. A. Akhmanov, A. I. Kovrigin, M. M. Strukov, and R. V. Khokhlov, "Frequency dependence of threshold of optical breakdown in air," Jetp Letters-USSR 1, 25-29 (1965)

Trenholme, J. B.

Ueda, H.

Wang, C.

Wei, H.

White, B.

Xu, Z.

Yamakawa, K.

Yin, D.

Zhang, C.

Zhao, B.

Zhu, J.

Appl. Opt.

J. Opt. A

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate," J. Opt. A 1, 398-403 (1999).
[CrossRef]

Jetp Letters-USSR

S. A. Akhmanov, A. I. Kovrigin, M. M. Strukov, and R. V. Khokhlov, "Frequency dependence of threshold of optical breakdown in air," Jetp Letters-USSR 1, 25-29 (1965)

Laser Physics

M. P. Kalachnikov, V. Karpov, H. Schonnagel, and W. Sandner, "100-terawatt titanium-sapphire laser system," Laser Physics 12, 368-374 (2002).

Opt. Express

Opt. Lett.

Other

W. Koechner, Solid-State Laser Engineering (Springer, Berlin, Heidelberg, 1996).

F. Plé, M. Pittman, F. Canova, and G. Jamelot, "Analysis and Solutions for Parasitic Lasing in Petawatt and Multi-Petawatt Ti:sapphire Laser Systems," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWD4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Geometry of a high-power large-aperture Ti:sapphire amplifier.

Fig. 2.
Fig. 2.

Calculated transverse gain as a function of position along the optical axis of the laser crystal. Dashed line: highly doped crystal with single pass pumping; solid line: lightly doped crystal with double pass pumping.

Fig. 3.
Fig. 3.

Illustration of pump beam homogenisation and recycling.

Fig. 4.
Fig. 4.

Intensity distribution of raw pump beam.

Fig. 5.
Fig. 5.

Intensity distribution of homogenised pump beam in plane of Ti:S crystal.

Fig. 6.
Fig. 6.

Exploded view of the Ti:sapphire crystal cell and mounting.

Fig. 7.
Fig. 7.

Image of fluorescence of Ti:S crystal at 52 J pump energy; (a) without and (b) with index-matched absorber liquid. Images are normalised to maximum signal, signal values below 65% of maximum are shown in black.

Fig. 8.
Fig. 8.

Single-Pass small-signal gain with and without crystal being immersed in index-matching absorber fluid, measured as function of pump energy.

Tables (1)

Tables Icon

Table 1. Absorption measurements of IR140 laser dye in 1-bromonaphthalene.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

g o ( z ) = E st ( z ) σ E hv las = E st ( z ) F sat .
E st ( z ) = 1 A d E st d z ,
E st ( z ) = 1 A v las v P d E P d z = 1 A v las v P E P ( z ) α = v las v P F P ( z ) α ,
G T ( z ) = exp ( F P ( z ) F Sat v las v P α D ) .
G L = exp ( 1 F sat 0 l E st ( z ) d x ) = exp ( F st F sat ) = exp ( F abs F sat v las v P ) ,
G T ( z = 0 ) = exp ( F o F Sat v P v las α D ) G L exp ( α D ) .
D F = D P ( 2 d r + 1 ) 1 .

Metrics