Abstract

We present an endomicroscope apparatus that utilizes structured illumination to produce high resolution (~2.6µm) optically sectioned fluorescence images over a field of view of about 240µm. The endomicroscope is based on the use of a flexible imaging fiber bundle with a miniaturized objective. We also present a strategy to largely suppress structured illumination artifacts that arise when imaging in thick tissue that exhibits significant out-of-focus background. To establish the potential of our endomicroscope for preclinical or clinical applications, we provide images of BCECF-AM labeled rat colonic mucosa.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, and M. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Meth. 2, 941-950 (2005).
    [CrossRef]
  2. L. Giniunas, R. Juškaitis, and S. V. Shatalin, "Scanning fiber-optic microscope," Electron. Lett. 27, 724-726 (1991).
    [CrossRef]
  3. P. M. Delaney, M. R. Harris, and R. G. King, "Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging," Appl. Opt. 33, 573-577 (1994).
    [CrossRef] [PubMed]
  4. D. L. Dickensheets and G. S. Kino, "Micromachined scanning confocal microscope," Opt. Lett. 21, 764-766 (1996).
    [CrossRef] [PubMed]
  5. L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, "View of normal human skin in vivo as observed using fluorescent fiber-optics confocal microscopic imaging," J. Invest. Dermatol. 121, 706-712 (2003).
    [CrossRef] [PubMed]
  6. T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 1-4 (2005).
    [CrossRef]
  7. H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, "Fiber-optic confocal microscope using MEMS scanner and miniature objective lens," Opt. Express 15, 9113-9122 (2007).
    [CrossRef] [PubMed]
  8. J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, "Miniature near-infrared dual-axes confocal microscope utilizing two-dimensional microelectromechanical systems scanner," Opt. Lett. 32, 256-258 (2007).
    [CrossRef] [PubMed]
  9. J. Knittel, L. Schneider, L. Buess, G. Messerschmidt, and T. Possner, "Endoscope compatible confocal microscope using a gradient index lens system," Opt. Commun. 188, 267-273 (2001).
    [CrossRef]
  10. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy," J. Neurophys. 92, 3121-3133 (2004).
    [CrossRef]
  11. P. Kim, M. Puoris??haag, D. Coté, C. P. Lin, and S. H. Yun, "In vivo confocal and multiphoton microendoscopy," J. Biomed. Opt. 13, 010501 (2008).
    [CrossRef] [PubMed]
  12. A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber optic imaging bundle," Opt. Lett. 18, 565-567 (1993).
    [CrossRef] [PubMed]
  13. A. R. Rouse and A. F. Gmitro, "Multispectral imaging with a confocal microendoscope," Opt. Lett. 25, 1708-1710 (2000).
    [CrossRef]
  14. C. Liang, K.-B. Sung, R. R. Richards-Kortum, and M. R. Descour, "Design of a high-numerical aperture miniature microscope objective for an endoscope fiber confocal reflectance microscope," Appl. Opt. 41, 4603-4610 (2002).
    [CrossRef] [PubMed]
  15. E. Laemmela et al, "Fibered Confocal Fluorescence Microscopy (Cell-viZio?) Facilitates Extended Imaging in the Field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
    [CrossRef]
  16. K. Carlson, M. Chidley, K.-B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, "In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature lens," Appl. Opt. 44, 1792-1797 (2005)
    [CrossRef] [PubMed]
  17. F. Jean, G. Bourg-Heckly, and B. Viellerobe, "Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis," Opt. Express 15, 4008-4017 (2007).
    [CrossRef] [PubMed]
  18. M. A. A. Neil, R. Juškaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905-1907 (1997).
    [CrossRef]
  19. D. Karadaglic, R. Juškaitis, and T. Wilson, "Confocal Endoscopy via Structured Illumination," Scanning 24, 301-304 (2002).
    [CrossRef]
  20. M. A. A. Neil, R. Juškaitis, and T. Wilson, "Real time 3D fluorescence microscopy by two beam interference illumination," Opt. Commun. 153, 1-4 (1998).
    [CrossRef]
  21. M. A. A. Neil, A. Squire, R. Juškaitis, P. I. H. Bastiaens, and T. Wilson, "Wide field optically sectioning fluorescence microscopy with laser illumination," J. Microsc. 197 (Pt 1), 1-4 (2000).
    [CrossRef] [PubMed]
  22. F. Chasles, B. Dubertret, and A. C. Boccara, "Optimization and characterization of a structured illumination microscope," Opt. Express 15, 16130-16140 (2007).
    [CrossRef] [PubMed]
  23. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
    [CrossRef] [PubMed]
  24. L. H. Schaefer, D. Schuster, and J. Schaffer, "Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach," J. Microsc. 216, 165-174 (2004).
    [CrossRef] [PubMed]
  25. H. Fujii, T. Asakura, and Y. Shindo, "Measurement of surface roughness properties by using image speckle contrast," J. Opt. Soc. Am. 66, 1217-1222 (1976).
    [CrossRef]
  26. E. Jakeman and W. T. Welford, "Speckle statistics in imaging systems," Opt. Commun. 21, 72-79 (1977).
    [CrossRef]
  27. K. Ouchi, "Statistics of image plane speckle," Opt. Quantum Electron. 12, 237-243 (1980).
    [CrossRef]
  28. C. Ventalon, R. Heintzmann, and J. Mertz, "Dynamic speckle illumination microscopy with wavelet prefiltering," Opt. Lett. 32, 1417-1419 (2007).
    [CrossRef] [PubMed]
  29. M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198 (Pt 2), 82-87 (2000).
    [CrossRef] [PubMed]

2008 (1)

P. Kim, M. Puoris??haag, D. Coté, C. P. Lin, and S. H. Yun, "In vivo confocal and multiphoton microendoscopy," J. Biomed. Opt. 13, 010501 (2008).
[CrossRef] [PubMed]

2007 (5)

2005 (3)

K. Carlson, M. Chidley, K.-B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, "In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature lens," Appl. Opt. 44, 1792-1797 (2005)
[CrossRef] [PubMed]

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 1-4 (2005).
[CrossRef]

B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, and M. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Meth. 2, 941-950 (2005).
[CrossRef]

2004 (3)

E. Laemmela et al, "Fibered Confocal Fluorescence Microscopy (Cell-viZio?) Facilitates Extended Imaging in the Field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy," J. Neurophys. 92, 3121-3133 (2004).
[CrossRef]

L. H. Schaefer, D. Schuster, and J. Schaffer, "Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach," J. Microsc. 216, 165-174 (2004).
[CrossRef] [PubMed]

2003 (1)

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, "View of normal human skin in vivo as observed using fluorescent fiber-optics confocal microscopic imaging," J. Invest. Dermatol. 121, 706-712 (2003).
[CrossRef] [PubMed]

2002 (2)

2001 (2)

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

J. Knittel, L. Schneider, L. Buess, G. Messerschmidt, and T. Possner, "Endoscope compatible confocal microscope using a gradient index lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

2000 (3)

A. R. Rouse and A. F. Gmitro, "Multispectral imaging with a confocal microendoscope," Opt. Lett. 25, 1708-1710 (2000).
[CrossRef]

M. A. A. Neil, A. Squire, R. Juškaitis, P. I. H. Bastiaens, and T. Wilson, "Wide field optically sectioning fluorescence microscopy with laser illumination," J. Microsc. 197 (Pt 1), 1-4 (2000).
[CrossRef] [PubMed]

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198 (Pt 2), 82-87 (2000).
[CrossRef] [PubMed]

1998 (1)

M. A. A. Neil, R. Juškaitis, and T. Wilson, "Real time 3D fluorescence microscopy by two beam interference illumination," Opt. Commun. 153, 1-4 (1998).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

1993 (1)

1991 (1)

L. Giniunas, R. Juškaitis, and S. V. Shatalin, "Scanning fiber-optic microscope," Electron. Lett. 27, 724-726 (1991).
[CrossRef]

1980 (1)

K. Ouchi, "Statistics of image plane speckle," Opt. Quantum Electron. 12, 237-243 (1980).
[CrossRef]

1977 (1)

E. Jakeman and W. T. Welford, "Speckle statistics in imaging systems," Opt. Commun. 21, 72-79 (1977).
[CrossRef]

1976 (1)

Aksay, E.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy," J. Neurophys. 92, 3121-3133 (2004).
[CrossRef]

Asakura, T.

Aziz, D.

Bastiaens, P. I. H.

M. A. A. Neil, A. Squire, R. Juškaitis, P. I. H. Bastiaens, and T. Wilson, "Wide field optically sectioning fluorescence microscopy with laser illumination," J. Microsc. 197 (Pt 1), 1-4 (2000).
[CrossRef] [PubMed]

Boccara, A. C.

Bourg-Heckly, G.

Buess, L.

J. Knittel, L. Schneider, L. Buess, G. Messerschmidt, and T. Possner, "Endoscope compatible confocal microscope using a gradient index lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Carlson, K.

Chasles, F.

Cheung, E.

B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, and M. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Meth. 2, 941-950 (2005).
[CrossRef]

Chidley, M.

Cocker, E.

B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, and M. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Meth. 2, 941-950 (2005).
[CrossRef]

Cole, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Contag, C. H.

Coté, D.

P. Kim, M. Puoris??haag, D. Coté, C. P. Lin, and S. H. Yun, "In vivo confocal and multiphoton microendoscopy," J. Biomed. Opt. 13, 010501 (2008).
[CrossRef] [PubMed]

Dayel, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Delaney, P. M.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, "View of normal human skin in vivo as observed using fluorescent fiber-optics confocal microscopic imaging," J. Invest. Dermatol. 121, 706-712 (2003).
[CrossRef] [PubMed]

P. M. Delaney, M. R. Harris, and R. G. King, "Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging," Appl. Opt. 33, 573-577 (1994).
[CrossRef] [PubMed]

Descour, M.

Descour, M. R.

Dickensheets, D. L.

Dowling, K.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Dubertret, B.

Flusberg, B.

B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, and M. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Meth. 2, 941-950 (2005).
[CrossRef]

Follen, M.

Freeman, M.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, "View of normal human skin in vivo as observed using fluorescent fiber-optics confocal microscopic imaging," J. Invest. Dermatol. 121, 706-712 (2003).
[CrossRef] [PubMed]

French, P. M. W.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Fujii, H.

Fukuyama, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 1-4 (2005).
[CrossRef]

Gillenwater, A.

Giniunas, L.

L. Giniunas, R. Juškaitis, and S. V. Shatalin, "Scanning fiber-optic microscope," Electron. Lett. 27, 724-726 (1991).
[CrossRef]

Gmitro, A. F.

Gustafsson, M. G. L.

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198 (Pt 2), 82-87 (2000).
[CrossRef] [PubMed]

Harris, M. R.

Heintzmann, R.

Ishihara, Y.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 1-4 (2005).
[CrossRef]

Jakeman, E.

E. Jakeman and W. T. Welford, "Speckle statistics in imaging systems," Opt. Commun. 21, 72-79 (1977).
[CrossRef]

Jean, F.

Jones, R.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Jung, J.

B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, and M. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Meth. 2, 941-950 (2005).
[CrossRef]

Jung, J. C.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy," J. Neurophys. 92, 3121-3133 (2004).
[CrossRef]

Juškaitis, R.

D. Karadaglic, R. Juškaitis, and T. Wilson, "Confocal Endoscopy via Structured Illumination," Scanning 24, 301-304 (2002).
[CrossRef]

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. A. A. Neil, A. Squire, R. Juškaitis, P. I. H. Bastiaens, and T. Wilson, "Wide field optically sectioning fluorescence microscopy with laser illumination," J. Microsc. 197 (Pt 1), 1-4 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, and T. Wilson, "Real time 3D fluorescence microscopy by two beam interference illumination," Opt. Commun. 153, 1-4 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905-1907 (1997).
[CrossRef]

L. Giniunas, R. Juškaitis, and S. V. Shatalin, "Scanning fiber-optic microscope," Electron. Lett. 27, 724-726 (1991).
[CrossRef]

Karadaglic, D.

D. Karadaglic, R. Juškaitis, and T. Wilson, "Confocal Endoscopy via Structured Illumination," Scanning 24, 301-304 (2002).
[CrossRef]

Kim, P.

P. Kim, M. Puoris??haag, D. Coté, C. P. Lin, and S. H. Yun, "In vivo confocal and multiphoton microendoscopy," J. Biomed. Opt. 13, 010501 (2008).
[CrossRef] [PubMed]

King, R. G.

Kino, G. S.

Knittel, J.

J. Knittel, L. Schneider, L. Buess, G. Messerschmidt, and T. Possner, "Endoscope compatible confocal microscope using a gradient index lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Laemmela, E.

E. Laemmela et al, "Fibered Confocal Fluorescence Microscopy (Cell-viZio?) Facilitates Extended Imaging in the Field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef]

Lee, D.

Lever, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Liang, C.

Lin, C. P.

P. Kim, M. Puoris??haag, D. Coté, C. P. Lin, and S. H. Yun, "In vivo confocal and multiphoton microendoscopy," J. Biomed. Opt. 13, 010501 (2008).
[CrossRef] [PubMed]

Liu, J. T. C.

Mandella, M. J.

Mehta, A. D.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy," J. Neurophys. 92, 3121-3133 (2004).
[CrossRef]

Mertz, J.

Messerschmidt, G.

J. Knittel, L. Schneider, L. Buess, G. Messerschmidt, and T. Possner, "Endoscope compatible confocal microscope using a gradient index lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Neil, M. A. A.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. A. A. Neil, A. Squire, R. Juškaitis, P. I. H. Bastiaens, and T. Wilson, "Wide field optically sectioning fluorescence microscopy with laser illumination," J. Microsc. 197 (Pt 1), 1-4 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, and T. Wilson, "Real time 3D fluorescence microscopy by two beam interference illumination," Opt. Commun. 153, 1-4 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905-1907 (1997).
[CrossRef]

Ota, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 1-4 (2005).
[CrossRef]

Ouchi, K.

K. Ouchi, "Statistics of image plane speckle," Opt. Quantum Electron. 12, 237-243 (1980).
[CrossRef]

Parsons-Karavassilis, D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Pierce, M. C.

Piyawattanametha, W.

Possner, T.

J. Knittel, L. Schneider, L. Buess, G. Messerschmidt, and T. Possner, "Endoscope compatible confocal microscope using a gradient index lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Puoris??haag, M.

P. Kim, M. Puoris??haag, D. Coté, C. P. Lin, and S. H. Yun, "In vivo confocal and multiphoton microendoscopy," J. Biomed. Opt. 13, 010501 (2008).
[CrossRef] [PubMed]

Ra, H.

Richards-Kortum, R.

Richards-Kortum, R. R.

Rouse, A. R.

Schaefer, L. H.

L. H. Schaefer, D. Schuster, and J. Schaffer, "Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach," J. Microsc. 216, 165-174 (2004).
[CrossRef] [PubMed]

Schaffer, J.

L. H. Schaefer, D. Schuster, and J. Schaffer, "Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach," J. Microsc. 216, 165-174 (2004).
[CrossRef] [PubMed]

Schneider, L.

J. Knittel, L. Schneider, L. Buess, G. Messerschmidt, and T. Possner, "Endoscope compatible confocal microscope using a gradient index lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Schnitzer, M.

B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, and M. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Meth. 2, 941-950 (2005).
[CrossRef]

Schnitzer, M. J.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy," J. Neurophys. 92, 3121-3133 (2004).
[CrossRef]

Schuster, D.

L. H. Schaefer, D. Schuster, and J. Schaffer, "Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach," J. Microsc. 216, 165-174 (2004).
[CrossRef] [PubMed]

Shatalin, S. V.

L. Giniunas, R. Juškaitis, and S. V. Shatalin, "Scanning fiber-optic microscope," Electron. Lett. 27, 724-726 (1991).
[CrossRef]

Shin, H.-J.

Shindo, Y.

Siegel, J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Solgaard, O.

Squire, A.

M. A. A. Neil, A. Squire, R. Juškaitis, P. I. H. Bastiaens, and T. Wilson, "Wide field optically sectioning fluorescence microscopy with laser illumination," J. Microsc. 197 (Pt 1), 1-4 (2000).
[CrossRef] [PubMed]

Stepnoski, R.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy," J. Neurophys. 92, 3121-3133 (2004).
[CrossRef]

Sucharov, L. O. D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Sung, K.-B.

Swindle, L. D.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, "View of normal human skin in vivo as observed using fluorescent fiber-optics confocal microscopic imaging," J. Invest. Dermatol. 121, 706-712 (2003).
[CrossRef] [PubMed]

Takamatsu, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 1-4 (2005).
[CrossRef]

Tanaka, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 1-4 (2005).
[CrossRef]

Thomas, S. G.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, "View of normal human skin in vivo as observed using fluorescent fiber-optics confocal microscopic imaging," J. Invest. Dermatol. 121, 706-712 (2003).
[CrossRef] [PubMed]

Ventalon, C.

Viellerobe, B.

Wang, T. D.

Webb, S. E. D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

Welford, W. T.

E. Jakeman and W. T. Welford, "Speckle statistics in imaging systems," Opt. Commun. 21, 72-79 (1977).
[CrossRef]

Wilson, T.

D. Karadaglic, R. Juškaitis, and T. Wilson, "Confocal Endoscopy via Structured Illumination," Scanning 24, 301-304 (2002).
[CrossRef]

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

M. A. A. Neil, A. Squire, R. Juškaitis, P. I. H. Bastiaens, and T. Wilson, "Wide field optically sectioning fluorescence microscopy with laser illumination," J. Microsc. 197 (Pt 1), 1-4 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, and T. Wilson, "Real time 3D fluorescence microscopy by two beam interference illumination," Opt. Commun. 153, 1-4 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905-1907 (1997).
[CrossRef]

Wong, L. K.

Yun, S. H.

P. Kim, M. Puoris??haag, D. Coté, C. P. Lin, and S. H. Yun, "In vivo confocal and multiphoton microendoscopy," J. Biomed. Opt. 13, 010501 (2008).
[CrossRef] [PubMed]

Appl. Opt. (3)

Electron. Lett. (1)

L. Giniunas, R. Juškaitis, and S. V. Shatalin, "Scanning fiber-optic microscope," Electron. Lett. 27, 724-726 (1991).
[CrossRef]

J. Biomed. Opt. (2)

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 1-4 (2005).
[CrossRef]

P. Kim, M. Puoris??haag, D. Coté, C. P. Lin, and S. H. Yun, "In vivo confocal and multiphoton microendoscopy," J. Biomed. Opt. 13, 010501 (2008).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, "View of normal human skin in vivo as observed using fluorescent fiber-optics confocal microscopic imaging," J. Invest. Dermatol. 121, 706-712 (2003).
[CrossRef] [PubMed]

J. Microsc. (4)

M. A. A. Neil, A. Squire, R. Juškaitis, P. I. H. Bastiaens, and T. Wilson, "Wide field optically sectioning fluorescence microscopy with laser illumination," J. Microsc. 197 (Pt 1), 1-4 (2000).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001).
[CrossRef] [PubMed]

L. H. Schaefer, D. Schuster, and J. Schaffer, "Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach," J. Microsc. 216, 165-174 (2004).
[CrossRef] [PubMed]

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198 (Pt 2), 82-87 (2000).
[CrossRef] [PubMed]

J. Neurophys. (1)

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy," J. Neurophys. 92, 3121-3133 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vasc. Res. (1)

E. Laemmela et al, "Fibered Confocal Fluorescence Microscopy (Cell-viZio?) Facilitates Extended Imaging in the Field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef]

Nat. Meth. (1)

B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, and M. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Meth. 2, 941-950 (2005).
[CrossRef]

Opt. Commun. (3)

J. Knittel, L. Schneider, L. Buess, G. Messerschmidt, and T. Possner, "Endoscope compatible confocal microscope using a gradient index lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

E. Jakeman and W. T. Welford, "Speckle statistics in imaging systems," Opt. Commun. 21, 72-79 (1977).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, "Real time 3D fluorescence microscopy by two beam interference illumination," Opt. Commun. 153, 1-4 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Opt. Quantum Electron. (1)

K. Ouchi, "Statistics of image plane speckle," Opt. Quantum Electron. 12, 237-243 (1980).
[CrossRef]

Scanning (1)

D. Karadaglic, R. Juškaitis, and T. Wilson, "Confocal Endoscopy via Structured Illumination," Scanning 24, 301-304 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Endoscope setup. A grid pattern is produced by a spatial light modulator (SLM) and projected onto a sample via an imaging fiber bundle equipped with a miniaturized objective (O2). The fluorescence generated from the sample is then imaged through this fiber bundle onto CCD camera. Notation: lenses (L), spatial light modulator (SLM), polarizing beam splitter (PBS), dichroic (D), objectives (O), sample (S), filter (F).

Fig. 2.
Fig. 2.

(a) Raw image of a thin uniform fluorescent sample illuminated with a rectangular grid pattern. Cores are clearly separated showing that the resolution is limited by the core sampling, not imaging optics. (b) Corresponding Fourier transform of this raw image (log brightness scale). The outer ring of frequencies stems from the quasi-periodic distribution of the fiber cores. The inner dashed line is the effective cutoff frequency according to the Nyquist theorem. (c) Blowup of the Fourier transform about the origin. The characteristic harmonics of the grid pattern are apparent.

Fig. 3.
Fig. 3.

(a and b) Widefield and SIM image of lens-cleaning paper labeled with a drop of fluorescein solution. (c and d) Widefield and SIM image of an exteriorized rat colonic mucosa labeled with BCECF-AM dye. Artifacts at the grid period (21µm) are apparent in both SIM images.

Fig. 4.
Fig. 4.

(a) Schematic illustration of in-focus (red) and out-of-focus (blue dashed) contributions to the intensity spectrum of a widefield image. (b) In-focus and out-of-focus contributions to the intensity of a raw image with grid pattern illumination (|��1(k)|). Note: only the in-focus contribution becomes modulated. (c) Phase stepping (|�� ϕ (k)|) suppresses both the unmodulated contributions (in-focus and out-of-focus) as well as a single sideband of the modulated contributions (here, left sideband). Imperfect phase stepping leaves behind a residual peak about k=0 (blue dashed) that arises dominantly from the out-of-focus background. (d) Experimental results derived from the sample in Fig. 3(d). The intensity spectrum (magnitude) of a single raw image with grid pattern illumination (blue dashed) is plotted alongside the intensity spectrum after phase stepping (red). In the latter case, a residual peak about k=0 is readily apparent. This peak can be rejected with the use of a high pass filter (black dotted).

Fig. 5.
Fig. 5.

(a) SIM image of rat colonic mucosa (same sample as in Fig. 3(c–d)) when each raw image is normalized to its respective mean. Note: this technique only partially suppresses the residual grid pattern in Fig. 3(d). (b) SIM image using the technique of high-pass filtering of �� ϕ (k≈0) to minimize the effects of imperfect phase stepping. Image quality is manifestly improved.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I SIM ( x ) = 1 3 2 ( I 1 ( x ) I 2 ( x ) ) 2 + ( I 2 ( x ) I 3 ( x ) ) 2 + ( I 3 ( x ) I 1 ( x ) ) 2 .
I SIM ( x ) = 1 3 I 1 ( x ) + I 2 ( x ) e i 2 π 3 + I 3 ( x ) e i 4 π 3
I SIM ( x ) = FT 1 [ 𝓘 ϕ ( k ) ]
𝓘 ϕ ( k ) = 1 3 ( 𝓘 1 ( k ) + 𝓘 2 ( k ) e i 2 π 3 + 𝓘 3 ( k ) e i 4 π 3 )

Metrics