Abstract

We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-µm-diameter carbon fibers are experimentally demonstrated at 80 µm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5–3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance

Victor X.D. Yang, Maggie L. Gordon, Bing Qi, Julius Pekar, Stuart Lo, Emily Seng-Yue, Alvin Mok, Brian C. Wilson, and I. Alex Vitkin
Opt. Express 11(7) 794-809 (2003)

Fast full-view photoacoustic imaging by combined scanning with a linear transducer array

Diwu Yang, Da Xing, Sihua Yang, and Liangzhong Xiang
Opt. Express 15(23) 15566-15575 (2007)

Realtime Photoacoustic Microscopy of Murine Cardiovascular Dynamics

R.J. Zemp, L. Song, R. Bitton, K.K. Shung, and L.V. Wang
Opt. Express 16(22) 18551-18556 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
    [Crossref] [PubMed]
  2. C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, “Longitudinal correlations in a small-animal PET studies,” Med. Phys. 32, 1901–1901 (2005).
    [Crossref]
  3. P. A. Dayton and K. W. Ferrara, “Targeted imaging using ultrasound,” J. Magn. Res. 16, 362–377 (2002).
    [Crossref]
  4. O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound. Med. Biol. 32, 73–82 (2006).
    [Crossref]
  5. M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, - (2006).
    [Crossref]
  6. A. Dunn and D. Boas, “Transport-based image reconstruction in turbid media with small source-detector separations,” Opt. Lett. 25, 1777–1779 (2000).
    [Crossref]
  7. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29, 1650–1652 (2004).
    [Crossref] [PubMed]
  8. G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
    [Crossref] [PubMed]
  9. X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
    [Crossref] [PubMed]
  10. K. Maslov, G. Stoica, and L. V. H. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625–627 (2005).
    [Crossref] [PubMed]
  11. H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
    [Crossref] [PubMed]
  12. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol 52, 1349–1361 (2007).
    [Crossref] [PubMed]
  13. X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
    [Crossref] [PubMed]
  14. L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
    [Crossref] [PubMed]
  15. M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).
  16. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imag. 24, 436–440 (2005).
    [Crossref]
  17. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Select. Top. Quantum Electron. 5, 981–988 (1999).
    [Crossref]
  18. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
    [Crossref] [PubMed]
  19. R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
    [Crossref] [PubMed]
  20. R. Kruger, W. Kiser, D. Reinecke, and G. Kruger, “Molecular imaging with thermoacoustic computed tomography,” Med. Phys. 30, 1542–1542 (2003).
  21. E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330–1338 (2006).
    [Crossref] [PubMed]
  22. R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
    [Crossref] [PubMed]
  23. J. M. Cannata, J. A. Williams, Q. F. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 224–236 (2006).
    [Crossref] [PubMed]
  24. R. Bitton, R. Zemp, L. Meng-Lin, J. Yen, L. H. Wang, and K. K. Shung, “Photoacoustic Microscopy with a 30 MHz Array and Receive System,” in IEEE Ultrasonics Symposium (IEEE, 2006), pp. 389–392.
  25. K. Wall and G. R. Lockwood, “Modern implementation of a realtime 3D beamformer and scan converter system,” in Ultrasonics Symposium (2005), pp. 1400–1403.
  26. C.H. Hu, X.C. Xu, J.M. Cannata, J.T. Yen, and K.K. Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,  53, 317–323 (2006).
    [Crossref] [PubMed]
  27. G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proc. IEEE 86, 82–85 (1998).
    [Crossref]
  28. S. A. Telenkov, B. S. Tanenbaum, D. M. Goodman, J. S. Nelson, and T. E. Milner, “In vivo infrared tomographic imaging of laser-heated blood vessels,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1193–1199 (1999).
    [Crossref]
  29. J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. VanGemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers in Medical Science 11, 199–204 (1996).
    [Crossref]
  30. D. Napolitano, C. Ching-Hua, G. W. McLaughlin, D. DeBusschere, L. Y. L. Mo, and J. Ting-Lan, “Zone-based B-mode imaging,” in IEEE Ultrasonics Symposium, (IEEE, 2003), pp. 25–28.

2007 (3)

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol 52, 1349–1361 (2007).
[Crossref] [PubMed]

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[Crossref] [PubMed]

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[Crossref] [PubMed]

2006 (7)

J. M. Cannata, J. A. Williams, Q. F. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 224–236 (2006).
[Crossref] [PubMed]

C.H. Hu, X.C. Xu, J.M. Cannata, J.T. Yen, and K.K. Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,  53, 317–323 (2006).
[Crossref] [PubMed]

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330–1338 (2006).
[Crossref] [PubMed]

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound. Med. Biol. 32, 73–82 (2006).
[Crossref]

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, - (2006).
[Crossref]

2005 (4)

C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, “Longitudinal correlations in a small-animal PET studies,” Med. Phys. 32, 1901–1901 (2005).
[Crossref]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[Crossref] [PubMed]

K. Maslov, G. Stoica, and L. V. H. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625–627 (2005).
[Crossref] [PubMed]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imag. 24, 436–440 (2005).
[Crossref]

2004 (1)

2003 (4)

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[Crossref] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref] [PubMed]

R. Kruger, W. Kiser, D. Reinecke, and G. Kruger, “Molecular imaging with thermoacoustic computed tomography,” Med. Phys. 30, 1542–1542 (2003).

2002 (1)

P. A. Dayton and K. W. Ferrara, “Targeted imaging using ultrasound,” J. Magn. Res. 16, 362–377 (2002).
[Crossref]

2000 (1)

1999 (2)

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Select. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

S. A. Telenkov, B. S. Tanenbaum, D. M. Goodman, J. S. Nelson, and T. E. Milner, “In vivo infrared tomographic imaging of laser-heated blood vessels,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1193–1199 (1999).
[Crossref]

1998 (1)

G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proc. IEEE 86, 82–85 (1998).
[Crossref]

1997 (1)

1996 (1)

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. VanGemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers in Medical Science 11, 199–204 (1996).
[Crossref]

Abbey, C.

C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, “Longitudinal correlations in a small-animal PET studies,” Med. Phys. 32, 1901–1901 (2005).
[Crossref]

Beard, P.

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330–1338 (2006).
[Crossref] [PubMed]

Bevan, P. D.

O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound. Med. Biol. 32, 73–82 (2006).
[Crossref]

Bitton, R.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[Crossref] [PubMed]

R. Bitton, R. Zemp, L. Meng-Lin, J. Yen, L. H. Wang, and K. K. Shung, “Photoacoustic Microscopy with a 30 MHz Array and Receive System,” in IEEE Ultrasonics Symposium (IEEE, 2006), pp. 389–392.

Boas, D.

Boas, D. A.

Borowsky, A.

C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, “Longitudinal correlations in a small-animal PET studies,” Med. Phys. 32, 1901–1901 (2005).
[Crossref]

Burns, P. N.

O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound. Med. Biol. 32, 73–82 (2006).
[Crossref]

Cannata, J. M.

J. M. Cannata, J. A. Williams, Q. F. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 224–236 (2006).
[Crossref] [PubMed]

Cannata, J.M.

C.H. Hu, X.C. Xu, J.M. Cannata, J.T. Yen, and K.K. Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,  53, 317–323 (2006).
[Crossref] [PubMed]

Cardiff, R.

C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, “Longitudinal correlations in a small-animal PET studies,” Med. Phys. 32, 1901–1901 (2005).
[Crossref]

Cherin, E.

O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound. Med. Biol. 32, 73–82 (2006).
[Crossref]

Cherry, S.

C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, “Longitudinal correlations in a small-animal PET studies,” Med. Phys. 32, 1901–1901 (2005).
[Crossref]

Cheung, K.

O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound. Med. Biol. 32, 73–82 (2006).
[Crossref]

Ching-Hua, C.

D. Napolitano, C. Ching-Hua, G. W. McLaughlin, D. DeBusschere, L. Y. L. Mo, and J. Ting-Lan, “Zone-based B-mode imaging,” in IEEE Ultrasonics Symposium, (IEEE, 2003), pp. 25–28.

Couture, O.

O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound. Med. Biol. 32, 73–82 (2006).
[Crossref]

Dale, A. M.

Dayton, P. A.

P. A. Dayton and K. W. Ferrara, “Targeted imaging using ultrasound,” J. Magn. Res. 16, 362–377 (2002).
[Crossref]

DeBusschere, D.

D. Napolitano, C. Ching-Hua, G. W. McLaughlin, D. DeBusschere, L. Y. L. Mo, and J. Ting-Lan, “Zone-based B-mode imaging,” in IEEE Ultrasonics Symposium, (IEEE, 2003), pp. 25–28.

Dunn, A.

Dunn, A. K.

Esenaliev, R. O.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Select. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

Ferrara, K. W.

P. A. Dayton and K. W. Ferrara, “Targeted imaging using ultrasound,” J. Magn. Res. 16, 362–377 (2002).
[Crossref]

Foster, F. S.

O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound. Med. Biol. 32, 73–82 (2006).
[Crossref]

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imag. 24, 436–440 (2005).
[Crossref]

Gambhir, S. S.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[Crossref] [PubMed]

Goodman, D. M.

S. A. Telenkov, B. S. Tanenbaum, D. M. Goodman, J. S. Nelson, and T. E. Milner, “In vivo infrared tomographic imaging of laser-heated blood vessels,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1193–1199 (1999).
[Crossref]

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. VanGemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers in Medical Science 11, 199–204 (1996).
[Crossref]

Gregg, J.

C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, “Longitudinal correlations in a small-animal PET studies,” Med. Phys. 32, 1901–1901 (2005).
[Crossref]

Hillman, E. M. C.

Hu, C.H.

C.H. Hu, X.C. Xu, J.M. Cannata, J.T. Yen, and K.K. Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,  53, 317–323 (2006).
[Crossref] [PubMed]

Jacques, S. L.

Jaeger, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imag. 24, 436–440 (2005).
[Crossref]

Karabutov, A. A.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Select. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

Kiser, W.

R. Kruger, W. Kiser, D. Reinecke, and G. Kruger, “Molecular imaging with thermoacoustic computed tomography,” Med. Phys. 30, 1542–1542 (2003).

Kiser, W. L.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref] [PubMed]

Kruger, G.

R. Kruger, W. Kiser, D. Reinecke, and G. Kruger, “Molecular imaging with thermoacoustic computed tomography,” Med. Phys. 30, 1542–1542 (2003).

Kruger, G. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref] [PubMed]

Kruger, R.

R. Kruger, W. Kiser, D. Reinecke, and G. Kruger, “Molecular imaging with thermoacoustic computed tomography,” Med. Phys. 30, 1542–1542 (2003).

Kruger, R. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref] [PubMed]

Ku, G.

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[Crossref] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

Ku, G. N.

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imag. 24, 436–440 (2005).
[Crossref]

Li, C.

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

Li, L.

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[Crossref] [PubMed]

Li, M.

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

Li, M. L.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[Crossref] [PubMed]

Lockwood, G. R.

K. Wall and G. R. Lockwood, “Modern implementation of a realtime 3D beamformer and scan converter system,” in Ultrasonics Symposium (2005), pp. 1400–1403.

Lungu, G.

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[Crossref] [PubMed]

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

Maslov, K.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol 52, 1349–1361 (2007).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

K. Maslov, G. Stoica, and L. V. H. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625–627 (2005).
[Crossref] [PubMed]

Massoud, T. F.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[Crossref] [PubMed]

McGoldrick, E.

C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, “Longitudinal correlations in a small-animal PET studies,” Med. Phys. 32, 1901–1901 (2005).
[Crossref]

McLaughlin, G. W.

D. Napolitano, C. Ching-Hua, G. W. McLaughlin, D. DeBusschere, L. Y. L. Mo, and J. Ting-Lan, “Zone-based B-mode imaging,” in IEEE Ultrasonics Symposium, (IEEE, 2003), pp. 25–28.

Meng-Lin, L.

R. Bitton, R. Zemp, L. Meng-Lin, J. Yen, L. H. Wang, and K. K. Shung, “Photoacoustic Microscopy with a 30 MHz Array and Receive System,” in IEEE Ultrasonics Symposium (IEEE, 2006), pp. 389–392.

Milner, T. E.

S. A. Telenkov, B. S. Tanenbaum, D. M. Goodman, J. S. Nelson, and T. E. Milner, “In vivo infrared tomographic imaging of laser-heated blood vessels,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1193–1199 (1999).
[Crossref]

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. VanGemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers in Medical Science 11, 199–204 (1996).
[Crossref]

Mo, L. Y. L.

D. Napolitano, C. Ching-Hua, G. W. McLaughlin, D. DeBusschere, L. Y. L. Mo, and J. Ting-Lan, “Zone-based B-mode imaging,” in IEEE Ultrasonics Symposium, (IEEE, 2003), pp. 25–28.

Moore, G. E.

G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proc. IEEE 86, 82–85 (1998).
[Crossref]

Napolitano, D.

D. Napolitano, C. Ching-Hua, G. W. McLaughlin, D. DeBusschere, L. Y. L. Mo, and J. Ting-Lan, “Zone-based B-mode imaging,” in IEEE Ultrasonics Symposium, (IEEE, 2003), pp. 25–28.

Nelson, J. S.

S. A. Telenkov, B. S. Tanenbaum, D. M. Goodman, J. S. Nelson, and T. E. Milner, “In vivo infrared tomographic imaging of laser-heated blood vessels,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1193–1199 (1999).
[Crossref]

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. VanGemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers in Medical Science 11, 199–204 (1996).
[Crossref]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imag. 24, 436–440 (2005).
[Crossref]

Oh, J.

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

Oraevsky, A. A.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Select. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[Crossref] [PubMed]

Pang, Y. J.

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Reinecke, D.

R. Kruger, W. Kiser, D. Reinecke, and G. Kruger, “Molecular imaging with thermoacoustic computed tomography,” Med. Phys. 30, 1542–1542 (2003).

Reinecke, D. R.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref] [PubMed]

Ritter, T. A.

J. M. Cannata, J. A. Williams, Q. F. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 224–236 (2006).
[Crossref] [PubMed]

Shung, K. K.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[Crossref] [PubMed]

J. M. Cannata, J. A. Williams, Q. F. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 224–236 (2006).
[Crossref] [PubMed]

R. Bitton, R. Zemp, L. Meng-Lin, J. Yen, L. H. Wang, and K. K. Shung, “Photoacoustic Microscopy with a 30 MHz Array and Receive System,” in IEEE Ultrasonics Symposium (IEEE, 2006), pp. 389–392.

Shung, K.K.

C.H. Hu, X.C. Xu, J.M. Cannata, J.T. Yen, and K.K. Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,  53, 317–323 (2006).
[Crossref] [PubMed]

Sivaramakrishnan, M.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol 52, 1349–1361 (2007).
[Crossref] [PubMed]

Stoica, G.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol 52, 1349–1361 (2007).
[Crossref] [PubMed]

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[Crossref] [PubMed]

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

K. Maslov, G. Stoica, and L. V. H. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625–627 (2005).
[Crossref] [PubMed]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[Crossref] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

Tanenbaum, B. S.

S. A. Telenkov, B. S. Tanenbaum, D. M. Goodman, J. S. Nelson, and T. E. Milner, “In vivo infrared tomographic imaging of laser-heated blood vessels,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1193–1199 (1999).
[Crossref]

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. VanGemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers in Medical Science 11, 199–204 (1996).
[Crossref]

Telenkov, S. A.

S. A. Telenkov, B. S. Tanenbaum, D. M. Goodman, J. S. Nelson, and T. E. Milner, “In vivo infrared tomographic imaging of laser-heated blood vessels,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1193–1199 (1999).
[Crossref]

Ting-Lan, J.

D. Napolitano, C. Ching-Hua, G. W. McLaughlin, D. DeBusschere, L. Y. L. Mo, and J. Ting-Lan, “Zone-based B-mode imaging,” in IEEE Ultrasonics Symposium, (IEEE, 2003), pp. 25–28.

Tittel, F. K.

VanGemert, M. J. C.

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. VanGemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers in Medical Science 11, 199–204 (1996).
[Crossref]

Wall, K.

K. Wall and G. R. Lockwood, “Modern implementation of a realtime 3D beamformer and scan converter system,” in Ultrasonics Symposium (2005), pp. 1400–1403.

Wang, L. H.

R. Bitton, R. Zemp, L. Meng-Lin, J. Yen, L. H. Wang, and K. K. Shung, “Photoacoustic Microscopy with a 30 MHz Array and Receive System,” in IEEE Ultrasonics Symposium (IEEE, 2006), pp. 389–392.

Wang, L. H. V.

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, - (2006).
[Crossref]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[Crossref] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Wang, L. V.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol 52, 1349–1361 (2007).
[Crossref] [PubMed]

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[Crossref] [PubMed]

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[Crossref] [PubMed]

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

Wang, L. V. H.

Wang, W.

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

Wang, X. D.

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[Crossref] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imag. 24, 436–440 (2005).
[Crossref]

Williams, J. A.

J. M. Cannata, J. A. Williams, Q. F. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 224–236 (2006).
[Crossref] [PubMed]

X .X.,

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

Xie, X. Y.

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).
[Crossref] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Xu, M. H.

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, - (2006).
[Crossref]

Xu, X.C.

C.H. Hu, X.C. Xu, J.M. Cannata, J.T. Yen, and K.K. Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,  53, 317–323 (2006).
[Crossref] [PubMed]

Yen, J.

R. Bitton, R. Zemp, L. Meng-Lin, J. Yen, L. H. Wang, and K. K. Shung, “Photoacoustic Microscopy with a 30 MHz Array and Receive System,” in IEEE Ultrasonics Symposium (IEEE, 2006), pp. 389–392.

Yen, J.T.

C.H. Hu, X.C. Xu, J.M. Cannata, J.T. Yen, and K.K. Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,  53, 317–323 (2006).
[Crossref] [PubMed]

Zemp, R.

R. Bitton, R. Zemp, L. Meng-Lin, J. Yen, L. H. Wang, and K. K. Shung, “Photoacoustic Microscopy with a 30 MHz Array and Receive System,” in IEEE Ultrasonics Symposium (IEEE, 2006), pp. 389–392.

Zemp, R. J.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[Crossref] [PubMed]

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[Crossref] [PubMed]

Zhang, E.

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330–1338 (2006).
[Crossref] [PubMed]

Zhang, H. F.

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol 52, 1349–1361 (2007).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

Zhou, Q. F.

J. M. Cannata, J. A. Williams, Q. F. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 224–236 (2006).
[Crossref] [PubMed]

Appl. Opt. (2)

Genes Dev. (1)

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).
[Crossref] [PubMed]

IEEE J. Select. Top. Quantum Electron. (1)

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Select. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

S. A. Telenkov, B. S. Tanenbaum, D. M. Goodman, J. S. Nelson, and T. E. Milner, “In vivo infrared tomographic imaging of laser-heated blood vessels,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1193–1199 (1999).
[Crossref]

IEEE Trans. Med. Imag. (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imag. 24, 436–440 (2005).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

C.H. Hu, X.C. Xu, J.M. Cannata, J.T. Yen, and K.K. Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,  53, 317–323 (2006).
[Crossref] [PubMed]

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330–1338 (2006).
[Crossref] [PubMed]

J. M. Cannata, J. A. Williams, Q. F. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 224–236 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[Crossref] [PubMed]

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[Crossref] [PubMed]

J. Magn. Res. (1)

P. A. Dayton and K. W. Ferrara, “Targeted imaging using ultrasound,” J. Magn. Res. 16, 362–377 (2002).
[Crossref]

Lasers in Medical Science (1)

J. S. Nelson, T. E. Milner, B. S. Tanenbaum, D. M. Goodman, and M. J. C. VanGemert, “Infra-red tomography of port-wine-stain blood vessels in human skin,” Lasers in Medical Science 11, 199–204 (1996).
[Crossref]

Med. Phys. (3)

C. Abbey, A. Borowsky, J. Gregg, E. McGoldrick, R. Cardiff, and S. Cherry, “Longitudinal correlations in a small-animal PET studies,” Med. Phys. 32, 1901–1901 (2005).
[Crossref]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30, 856–860 (2003).
[Crossref] [PubMed]

R. Kruger, W. Kiser, D. Reinecke, and G. Kruger, “Molecular imaging with thermoacoustic computed tomography,” Med. Phys. 30, 1542–1542 (2003).

Nat. Biotechnol. (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Med. Biol (1)

M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol 52, 1349–1361 (2007).
[Crossref] [PubMed]

Proc. IEEE (1)

G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proc. IEEE 86, 82–85 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, - (2006).
[Crossref]

Ultrasound. Med. Biol. (1)

O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound. Med. Biol. 32, 73–82 (2006).
[Crossref]

Other (4)

M. Li, J. Oh, X .X., G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE (Accepted 2007).

D. Napolitano, C. Ching-Hua, G. W. McLaughlin, D. DeBusschere, L. Y. L. Mo, and J. Ting-Lan, “Zone-based B-mode imaging,” in IEEE Ultrasonics Symposium, (IEEE, 2003), pp. 25–28.

R. Bitton, R. Zemp, L. Meng-Lin, J. Yen, L. H. Wang, and K. K. Shung, “Photoacoustic Microscopy with a 30 MHz Array and Receive System,” in IEEE Ultrasonics Symposium (IEEE, 2006), pp. 389–392.

K. Wall and G. R. Lockwood, “Modern implementation of a realtime 3D beamformer and scan converter system,” in Ultrasonics Symposium (2005), pp. 1400–1403.

Supplementary Material (4)

» Media 1: AVI (2508 KB)     
» Media 2: AVI (2989 KB)     
» Media 3: AVI (3180 KB)     
» Media 4: AVI (4139 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Diagram of the key components of our realtime photoacoustic imaging system, including a KHz-repetition rate Q-switched pump laser, a dye laser, a fiber optic cable, an ultrasound transducer (US TX), receive electronics, a dual-socket quad-core CPU personal computer (PC) with an 8-Ch 125 MS/s data acquisition card, and a monitor for realtime display.

Fig. 2.
Fig. 2.

Architecture of the receive and control electronics of our realtime photoacoustic imaging system. The 48 receive channels are boosted by pre-amplifiers, down-multiplexed (MUX), bandpass (BP) filtered, and amplified with a variable gain amplifier stage (VGA). The resulting 16 channels are down-multiplexed to 8 channels for digitization. Control electronics toggle through multiplexer states, and pass trigger signals to the laser.

Fig. 3.
Fig. 3.

To offload computational burden from the CPUs to the GPU, we implemented a 32×32 scan-conversion mesh over which the pre-scan converted beamformed image was warped using graphic-card rendering methods primarily developed for the video game industry.

Fig. 4.
Fig. 4.

Schematic of software communication between the data acquisition card, CPUs, GPU, and system RAM. Note that the acquisition, beamforming, and display operations were implemented on parallel threads. Since these operations read and write common resources, signaling flags were used to avoid access conflicts.

Fig. 5.
Fig. 5.

(a) C-scan maximum amplitude projection image of crossed 6-µm carbon fibers, constructed from 50 parallel B-scans. (b) a sample B-scan at the dotted-line position in (a). The carbon fibers are separated here by only ~80 µm, yet are clearly distinguishable. (c) a cross-range maximum amplitude projection of (b) onto the x-axis.

Fig. 6.
Fig. 6.

Movie (2.5 MB) of photoacoustic B-scans of a human hair in water. The probe was moved up and down in an oscillating fashion using manual adjustment of a micrometer on a translation stage. This video sequence demonstrates the realtime capability of the system, specifically it’s robustness to vertical motions. [Media 1]

Fig. 7.
Fig. 7.

Movie (3 MB) of photoacoustic B-scans of a human hair in water. The probe was moved laterally by hand along a guide rail. This video sequence demonstrates the robustness of the multiplexed acquisition scheme against horizontal motions. [Media 2]

Fig. 8.
Fig. 8.

Photoacoustic image of microvasculature in a nude mouse. This figure demonstrates appreciable signal to depths of ~2.5 mm.

Fig. 9.
Fig. 9.

(3.2 MB) Photoacoustic movie sequence of subcutaneous microvasculature as the subject and probe are held in a fixed position. S is the skin surface and bright regions below the skin surface are microvessels including venules and arterioles. Two sample vessels are labeled with the letter V in the figure. [Media 3]

Fig. 10.
Fig. 10.

(4MB) Photoacoustic movie sequence of a 2-way fly-through across 10–15 mm over the skin surface S. Notice the prominent oblique vessel V move from the middle right to the center of the image and back as the array is translated along its elevation direction. [Media 4]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ n ( R , t ) = x n sin θ c + x n 2 cos 2 θ 2 Rc

Metrics