Abstract

In this paper, a sensor system for measuring continuous Bragg wavelength distribution in a long-length fiber Bragg grating is newly proposed, using synthesis of optical coherence function (SOCF), which is one of the spatial resolving techniques used for reflectometry. Experimental results are also reported. In the process of synthesizing optical coherence function, it is found that an apodization scheme is necessary to obtain the reflection spectrum of local section in a long-length FBG around the coherence peak. As a verification of this method, the detection of local Bragg wavelength shift due to temperature change within a short section in a long-length FBG is demonstrated experimentally.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, Optical Fiber Sensors, J. Dakin and B. Culshaw, eds., (Artech House, 1997), Vol. 4, pp. 369-407.
  2. B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
    [CrossRef]
  3. M. Enyama and K. Hotate, "Dynamic and random access strain measurement by fiber Bragg gratings with synthesis of optical coherence function," Proc. SPIE 5589, 144-153 (2004).
    [CrossRef]
  4. M. Volanthen, H. Geiger, and J. P. Dakin, "Distributed grating sensors using low-coherence reflectometry," J. Lightwave Technol. 15, 2076-2082 (1997).
    [CrossRef]
  5. X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
    [CrossRef]
  6. P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. Salathe, "On direct determination of non-uniform internal strain fields using fiber Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005).
    [CrossRef]
  7. M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, "Arbitrary strain profile measurement within fiber grating using interferometric Fourier transform technique," IEEE Electron. Lett. 33, 1242-1243 (1997).
    [CrossRef]
  8. H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).
  9. K. Hotate and Z. He, "Synthesis of optical-coherence function and its applications in distributed and multiplexed and multiplexed optical sensing, " J. of Lightwave Technol. 24, 2541-2557 (2006).
    [CrossRef]

2006 (2)

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
[CrossRef]

K. Hotate and Z. He, "Synthesis of optical-coherence function and its applications in distributed and multiplexed and multiplexed optical sensing, " J. of Lightwave Technol. 24, 2541-2557 (2006).
[CrossRef]

2005 (1)

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. Salathe, "On direct determination of non-uniform internal strain fields using fiber Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005).
[CrossRef]

2004 (1)

M. Enyama and K. Hotate, "Dynamic and random access strain measurement by fiber Bragg gratings with synthesis of optical coherence function," Proc. SPIE 5589, 144-153 (2004).
[CrossRef]

2001 (1)

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
[CrossRef]

1997 (2)

M. Volanthen, H. Geiger, and J. P. Dakin, "Distributed grating sensors using low-coherence reflectometry," J. Lightwave Technol. 15, 2076-2082 (1997).
[CrossRef]

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, "Arbitrary strain profile measurement within fiber grating using interferometric Fourier transform technique," IEEE Electron. Lett. 33, 1242-1243 (1997).
[CrossRef]

Allison, S. G.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
[CrossRef]

Batten, C. F.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
[CrossRef]

Boisrobert, C.

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
[CrossRef]

Botsis, J.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. Salathe, "On direct determination of non-uniform internal strain fields using fiber Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005).
[CrossRef]

Casari, P.

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
[CrossRef]

Chapeleau, X.

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
[CrossRef]

Childers, B. A.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
[CrossRef]

Chwang, J.

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, "Arbitrary strain profile measurement within fiber grating using interferometric Fourier transform technique," IEEE Electron. Lett. 33, 1242-1243 (1997).
[CrossRef]

Dakin, J. P.

M. Volanthen, H. Geiger, and J. P. Dakin, "Distributed grating sensors using low-coherence reflectometry," J. Lightwave Technol. 15, 2076-2082 (1997).
[CrossRef]

Dunkel, G. R.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. Salathe, "On direct determination of non-uniform internal strain fields using fiber Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005).
[CrossRef]

Enyama, M.

M. Enyama and K. Hotate, "Dynamic and random access strain measurement by fiber Bragg gratings with synthesis of optical coherence function," Proc. SPIE 5589, 144-153 (2004).
[CrossRef]

Froggatt, M. E.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
[CrossRef]

Geiger, H.

M. Volanthen, H. Geiger, and J. P. Dakin, "Distributed grating sensors using low-coherence reflectometry," J. Lightwave Technol. 15, 2076-2082 (1997).
[CrossRef]

Giaccari, P.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. Salathe, "On direct determination of non-uniform internal strain fields using fiber Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005).
[CrossRef]

Hare, D. A.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
[CrossRef]

He, Z.

K. Hotate and Z. He, "Synthesis of optical-coherence function and its applications in distributed and multiplexed and multiplexed optical sensing, " J. of Lightwave Technol. 24, 2541-2557 (2006).
[CrossRef]

Hotate, K.

K. Hotate and Z. He, "Synthesis of optical-coherence function and its applications in distributed and multiplexed and multiplexed optical sensing, " J. of Lightwave Technol. 24, 2541-2557 (2006).
[CrossRef]

M. Enyama and K. Hotate, "Dynamic and random access strain measurement by fiber Bragg gratings with synthesis of optical coherence function," Proc. SPIE 5589, 144-153 (2004).
[CrossRef]

Huang, S. Y.

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, "Arbitrary strain profile measurement within fiber grating using interferometric Fourier transform technique," IEEE Electron. Lett. 33, 1242-1243 (1997).
[CrossRef]

Humbert, L.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. Salathe, "On direct determination of non-uniform internal strain fields using fiber Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005).
[CrossRef]

Igawa, H.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

Jegley, D. C.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
[CrossRef]

Kageyama, K.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

Kanai, M.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

Kasai, T.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

Leduc, D.

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
[CrossRef]

Limberger, H. G.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. Salathe, "On direct determination of non-uniform internal strain fields using fiber Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005).
[CrossRef]

Lupi, C.

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
[CrossRef]

Measures, R. M.

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, "Arbitrary strain profile measurement within fiber grating using interferometric Fourier transform technique," IEEE Electron. Lett. 33, 1242-1243 (1997).
[CrossRef]

Moore, T. C.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
[CrossRef]

Murayama, H.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

Ny, R. L.

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
[CrossRef]

Ohn, M. M.

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, "Arbitrary strain profile measurement within fiber grating using interferometric Fourier transform technique," IEEE Electron. Lett. 33, 1242-1243 (1997).
[CrossRef]

Ohsawa, I.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

Ohta, K.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

Salathe, R.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. Salathe, "On direct determination of non-uniform internal strain fields using fiber Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005).
[CrossRef]

Scudeller, Y.

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
[CrossRef]

Uzawa, K.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

Volanthen, M.

M. Volanthen, H. Geiger, and J. P. Dakin, "Distributed grating sensors using low-coherence reflectometry," J. Lightwave Technol. 15, 2076-2082 (1997).
[CrossRef]

Yamaguchi, I.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

IEEE Electron. Lett. (1)

M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, "Arbitrary strain profile measurement within fiber grating using interferometric Fourier transform technique," IEEE Electron. Lett. 33, 1242-1243 (1997).
[CrossRef]

J. Lightwave Technol. (1)

M. Volanthen, H. Geiger, and J. P. Dakin, "Distributed grating sensors using low-coherence reflectometry," J. Lightwave Technol. 15, 2076-2082 (1997).
[CrossRef]

J. of Lightwave Technol. (1)

K. Hotate and Z. He, "Synthesis of optical-coherence function and its applications in distributed and multiplexed and multiplexed optical sensing, " J. of Lightwave Technol. 24, 2541-2557 (2006).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

X. Chapeleau, P. Casari, D. Leduc, Y. Scudeller, C. Lupi, R. L. Ny, and C. Boisrobert, "Determination of strain distribution and temperature gradient profiles from phase measurements of embedded fiber Bragg gratings," J. Opt. A: Pure Appl. Opt. 8, 775-781 (2006).
[CrossRef]

Proc. SPIE (2)

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore Sr., D. A. Hare, C. F. Batten, and D. C. Jegley, "Use of 3000 Bragg grating strain sensors distribution on four 8-m optical fibers during static load tests of a composite structure," Proc. SPIE 4332, 133- 142, (2001).
[CrossRef]

M. Enyama and K. Hotate, "Dynamic and random access strain measurement by fiber Bragg gratings with synthesis of optical coherence function," Proc. SPIE 5589, 144-153 (2004).
[CrossRef]

Smart Mater. Struct. (1)

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. Salathe, "On direct determination of non-uniform internal strain fields using fiber Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005).
[CrossRef]

Other (2)

A. D. Kersey, Optical Fiber Sensors, J. Dakin and B. Culshaw, eds., (Artech House, 1997), Vol. 4, pp. 369-407.

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, "Distributed strain measurement with high spatial resolution using fiber bragg gratings and optical frequency domain reflectometry," 18th Intern. Conf. Opt. Fiber Sensors, ThE40 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Optical coherence function synthesized by modulating frequency of a light source in the measurement system and (b) extended figure around the coherence peak with side lobes.

Fig. 2.
Fig. 2.

Concept of FBG’s Bragg wavelength distribution measurement by SOCF.

Fig. 3.
Fig. 3.

System configuration for measuring Bragg wavelength distribution in a long-length FBG. DFB-LD: distributed-feedback laser diode; IM: intensity modulator; AOM: acoust-optic modulator; PC: polarization controller; PD: photo-diode; BPF: band pass filter; SQD: square-low detector; FG: function generator; CG: current generator.

Fig. 4.
Fig. 4.

Apodization scheme by intensity modulation synchronized with frequency modulation of LD

Fig. 5.
Fig. 5.

Synthesized coherence function using the apodization scheme.

Fig. 6.
Fig. 6.

Experimental results of Bragg wavelength distribution measurement without apodization scheme. (a) Spectrogram. (b) Obtained spectrum at 30mm position in the grating. The deformation of the spectrum obtained in this experiment is due to the shape of the modulated power spectrum of the LD and the effect of the side lobe next to the coherence peak in the synthesized coherence function.

Fig. 7.
Fig. 7.

Experimental results of Bragg wavelength distribution measurement with apodization scheme. (a) Spectrogram. (b) Obtained spectrum at 30mm position in the grating.

Fig. 8.
Fig. 8.

Experimental results of Bragg wavelength distribution measurement under heating the FBG at around 40mm position. (a) Spectrogram. (b) Peak wavelength distribution.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = f 0 + f 1 sin ( 2 π f 2 t ) .
γ ( τ d ) = J 0 ( 2 f 1 f 2 sin ( π f 2 τ d ) ) .
z = c 2 n f 2 ,
δ z = 0.76 c π f 1 n .

Metrics