Abstract

In order to provide a guide for the design and optimization of bowtie slot antennas in the visible and near infrared spectral regime, their optical properties have been investigated with emphasis on geometry and materials. Although primarily theoretical, experimental investigations for reduced thickness cases are also included. As characterized by their field patterns, two types of resonances are discussed: plasmonic and Fabry-Pérot-like resonances. These resonance types show a linear dependence on aperture perimeter and film thickness, respectively, while showing a complementary behavior with near independence of the other respective parameter. Metal properties, as in the Drude model, are also considered. Various metals with respectively different skin depths are studied, showing a nearly linear dependence of the resonance wavelength on skin depth.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354 (1997).
    [CrossRef]
  2. K. Sendur and W. Challener, "Near-field radiation of bow-tie antennas and apertures at optical frequencies," J. Microsc. 210, 279 (2002).
    [CrossRef]
  3. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632 (2003).
    [CrossRef]
  4. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, "Fabrication of crescent-shaped optical antennas," Adv. Mater. 17, 1231 (2005).
    [CrossRef]
  5. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  6. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
    [CrossRef] [PubMed]
  7. J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561 (2005).
    [CrossRef] [PubMed]
  8. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  9. X. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
    [CrossRef] [PubMed]
  10. E. X. Jin and X. Xu, "Finit-Difference Time-Domain studies on optical transmission through planar nanoapertures in a Metal film," Jpn. J. Appl. Phys. 43, 407 (2004).
    [CrossRef]
  11. E. X. Jin and X. Xu, "Plasmonic effects in near-filed optical transmission enhancement through a single bowtieshaped aperture," Appl. Phys. B. 84, 3 (2006).
    [CrossRef]
  12. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
    [CrossRef]
  13. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361 (2006).
    [CrossRef] [PubMed]
  14. L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
    [CrossRef]
  15. L. Wang and X. Xu, "Spectral resonance of nanoscale bowtie apertures in visible wavelength," Appl. Phys. A 89, 293 (2007).
    [CrossRef]
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983).
    [CrossRef] [PubMed]
  17. B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley & Sons, Inc., New York, 2000).
    [CrossRef]
  18. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  19. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express 14, 8827 (2006).
    [CrossRef] [PubMed]
  20. J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 21 (2000).
    [CrossRef]
  21. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef]
  22. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
    [CrossRef]
  23. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  24. S. Astilean, Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265 (2000).
    [CrossRef]
  25. J. Lindberg, K. Lindfors, T. Setl, and A. T. Friberg, "Spectral analysis of resonant transmission of light through a single sub-wavelength slit," Opt. Express 12, 623 (2004).
    [CrossRef] [PubMed]
  26. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
    [CrossRef]
  27. L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606 (2006).
    [CrossRef] [PubMed]
  28. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39 (2007).
    [CrossRef] [PubMed]
  29. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Fort Worth, 1976).

2007 (4)

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang and X. Xu, "Spectral resonance of nanoscale bowtie apertures in visible wavelength," Appl. Phys. A 89, 293 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39 (2007).
[CrossRef] [PubMed]

2006 (5)

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express 14, 8827 (2006).
[CrossRef] [PubMed]

L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, "Plasmonic effects in near-filed optical transmission enhancement through a single bowtieshaped aperture," Appl. Phys. B. 84, 3 (2006).
[CrossRef]

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

2005 (6)

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, "Fabrication of crescent-shaped optical antennas," Adv. Mater. 17, 1231 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561 (2005).
[CrossRef] [PubMed]

2004 (3)

E. X. Jin and X. Xu, "Finit-Difference Time-Domain studies on optical transmission through planar nanoapertures in a Metal film," Jpn. J. Appl. Phys. 43, 407 (2004).
[CrossRef]

J. Lindberg, K. Lindfors, T. Setl, and A. T. Friberg, "Spectral analysis of resonant transmission of light through a single sub-wavelength slit," Opt. Express 12, 623 (2004).
[CrossRef] [PubMed]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

2003 (2)

X. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632 (2003).
[CrossRef]

2002 (1)

K. Sendur and W. Challener, "Near-field radiation of bow-tie antennas and apertures at optical frequencies," J. Microsc. 210, 279 (2002).
[CrossRef]

2000 (2)

S. Astilean, Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265 (2000).
[CrossRef]

J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 21 (2000).
[CrossRef]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

1997 (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

1983 (1)

Alexander, R. W.

Astilean, S.

S. Astilean, Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265 (2000).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Challener, W.

K. Sendur and W. Challener, "Near-field radiation of bow-tie antennas and apertures at optical frequencies," J. Microsc. 210, 279 (2002).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632 (2003).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39 (2007).
[CrossRef] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Enoch, S.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Etrich, C.

Friberg, A. T.

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39 (2007).
[CrossRef] [PubMed]

Giessen, H.

Greffet, J. J.

J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561 (2005).
[CrossRef] [PubMed]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Hesselink, L.

L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606 (2006).
[CrossRef] [PubMed]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

X. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
[CrossRef] [PubMed]

Ikari, T.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
[CrossRef]

Ishihara, K.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
[CrossRef]

Ito, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
[CrossRef]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, "Plasmonic effects in near-filed optical transmission enhancement through a single bowtieshaped aperture," Appl. Phys. B. 84, 3 (2006).
[CrossRef]

E. X. Jin and X. Xu, "Finit-Difference Time-Domain studies on optical transmission through planar nanoapertures in a Metal film," Jpn. J. Appl. Phys. 43, 407 (2004).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632 (2003).
[CrossRef]

Klein Koerkamp, K. J.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Kottmann, J.

J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 21 (2000).
[CrossRef]

Kreiter, M.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, "Fabrication of crescent-shaped optical antennas," Adv. Mater. 17, 1231 (2005).
[CrossRef]

Kuhl, J.

Kuipers, L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Lalanne, Ph.

S. Astilean, Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265 (2000).
[CrossRef]

Lederer, F.

Lindberg, J.

Lindfors, K.

Long, L. L.

Martin, O.

J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 21 (2000).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef]

Matteo, J. A.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Minamide, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Moreno, E.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Ohashi, K.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
[CrossRef]

Ordal, M. A.

Palamaru, M.

S. Astilean, Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265 (2000).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Porto, J. A.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632 (2003).
[CrossRef]

Rochholz, H.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, "Fabrication of crescent-shaped optical antennas," Adv. Mater. 17, 1231 (2005).
[CrossRef]

Rockstuhl, C.

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Schultz, S.

J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 21 (2000).
[CrossRef]

Segerink, F. B.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Sendur, K.

K. Sendur and W. Challener, "Near-field radiation of bow-tie antennas and apertures at optical frequencies," J. Microsc. 210, 279 (2002).
[CrossRef]

Setl, T.

Shi, X.

Shikata, J.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
[CrossRef]

Shumaker-Parry, J. S.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, "Fabrication of crescent-shaped optical antennas," Adv. Mater. 17, 1231 (2005).
[CrossRef]

Smith, D.

J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 21 (2000).
[CrossRef]

Sun, L.

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632 (2003).
[CrossRef]

Thornton, R. L.

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

van Hulst, N. F.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Wang, L.

L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang and X. Xu, "Spectral resonance of nanoscale bowtie apertures in visible wavelength," Appl. Phys. A 89, 293 (2007).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

Ward, C. A.

Xu, X.

L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang and X. Xu, "Spectral resonance of nanoscale bowtie apertures in visible wavelength," Appl. Phys. A 89, 293 (2007).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, "Plasmonic effects in near-filed optical transmission enhancement through a single bowtieshaped aperture," Appl. Phys. B. 84, 3 (2006).
[CrossRef]

E. X. Jin and X. Xu, "Finit-Difference Time-Domain studies on optical transmission through planar nanoapertures in a Metal film," Jpn. J. Appl. Phys. 43, 407 (2004).
[CrossRef]

Yokoyama, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
[CrossRef]

Yuen, Y.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Zentgraf, T.

Adv. Mater. (1)

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, "Fabrication of crescent-shaped optical antennas," Adv. Mater. 17, 1231 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

L. Wang and X. Xu, "Spectral resonance of nanoscale bowtie apertures in visible wavelength," Appl. Phys. A 89, 293 (2007).
[CrossRef]

Appl. Phys. B. (1)

E. X. Jin and X. Xu, "Plasmonic effects in near-filed optical transmission enhancement through a single bowtieshaped aperture," Appl. Phys. B. 84, 3 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture," Appl. Phys. Lett. 89, 201120 (2006).
[CrossRef]

L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354 (1997).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632 (2003).
[CrossRef]

J. Microsc. (1)

K. Sendur and W. Challener, "Near-field radiation of bow-tie antennas and apertures at optical frequencies," J. Microsc. 210, 279 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

E. X. Jin and X. Xu, "Finit-Difference Time-Domain studies on optical transmission through planar nanoapertures in a Metal film," Jpn. J. Appl. Phys. 43, 407 (2004).
[CrossRef]

Nano Lett. (1)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

Nature (1)

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Astilean, Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef]

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Science (2)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561 (2005).
[CrossRef] [PubMed]

Other (3)

B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley & Sons, Inc., New York, 2000).
[CrossRef]

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Fort Worth, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic view of a bowtie slot antenna in a free-standing metal film. Its geometry is defined by the outline lengths a and b, the flare angle θ, the gap size d, and the thickness t. (a) Top view. (b) Cross sectional view at the location of the dashed line. The normal incident light is linearly polarized along the x-direction.

Fig. 2.
Fig. 2.

Wavelength dependence of the calculated transmission spectrum of bowtie slot antenna arrays in a free-standing gold film. The geometry of the antenna arrays is given by a=300 nm, b=300 nm, d=40 nm, θ=90°, and t=200 nm.

Fig. 3.
Fig. 3.

(a) Distribution of electric maximum peak field of P resonance. (b) Current density distribution of P resonance. (c) Electric maximum peak field distribution of FP resonance. (d) Current density distribution of FP resonance.

Fig. 4.
Fig. 4.

Family of curves showing the calculated transmission spectra of bowtie slot antennas in free-standing gold films for normal light incidence. The gap size, angle, and film thickness of slot antennas are kept constant (d=40 nm, θ=90°, and t=200 nm) and the aperture perimeter is varied from 0.93 µm to 2.38 µm in steps of about 480 nm by tuning the outline dimensions a and b. The period of the antenna arrays are increased from 350 nm to 650 nm in steps of 100 nm with the increased aperture perimeter. The individual spectra are shifted upwards for clarity. (b) The resonance wavelengths of P and FP resonances as functions of the aperture perimeter of slot antennas.

Fig. 5.
Fig. 5.

(a) Family of curves showing the calculated transmission spectra of bowtie slot antenna arrays in free-standing gold films for normal light incidence. The outline dimension, gap size, and angle of slot antennas are kept constant (L=1.41 µm, d=40 nm, and θ=90°, px =py =450 nm), and the thickness of gold film t is varied from 150 nm to 300 nm in steps of 50 nm. The individual spectra are shifted upwards for clarity. (b) The resonance wavelengths of P and FP resonances as functions of the gold film thickness.

Fig. 6.
Fig. 6.

A typical scanning electron microscope image of bowtie slot antenna arrays in a gold film on quartz substrate. The gap size is around 80 nm and the flare angle is about 90°. The outline dimensions are a=500 nm and b=580 nm. The periods along the x and y directions are 800 nm.

Fig. 7.
Fig. 7.

(a) Family of curves showing the measured transmission spectra of bowtie slot antennas in thin gold films deposited on quartz substrates for normal light incidence. The gap size, angle, and film thickness of slot antennas are nearly constant (d=80 nm, θ=90°, and t=30 nm). The aperture perimeter L is varied from 1.46 µm to 3.60 µm in steps of about 500 nm by adjusting the outline dimensions a and b. The individual spectra are shifted upwards for clarity. (b) Dependence of P resonances on slot antenna aperture perimeter.

Fig. 8.
Fig. 8.

(a) Family of curves showing the transmission spectra of bowtie slot antennas in various metal films. The structure geometry is identical for each case as d=40 nm, θ=90°, and t=30 nm, a=b=300 nm, and px =py =450 nm. (b) The resonance wavelength dependence on the plasma frequencies of metals. The red line is a guide to the eye.

Fig. 9.
Fig. 9.

(a) The skin depth of various metals in the visible and near infrared regime. The lines are derived from calculations based on the Eq. (2), and the scattered curves are from the approximation in Eq. (3). The plasma frequency of each metal from Tab. 1 is given with the corresponding curve. (b) The wavelength of the plasmonic resonance of bowtie slot antennas shows a linear dependence on the skin depth of the metals.

Fig. 10.
Fig. 10.

(a) The schematic diagram of a RLC circuit. (b) The resonance amplitude decreases with the increased metal surface resistance. The solid squares are extracted from Fig. 8(a), the solid line is fitted with R 0/(R 0+Rs ), where R 0 is a fitting parameter.

Tables (1)

Tables Icon

Table 1. Plasma frequency and damping frequency of various metals [16]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε = ε 1 + i ε 2 = 1 ω p 2 ω 2 + γ 2 + i ω p 2 γ 2 ω ( ω 2 + γ 2 )
k = ε 1 2 + 1 2 ε 1 2 + ε 2 2 .
δ = c ω p
ρ ( ω ) = 1 σ = 1 i ω τ σ 0 ,
ρ 0 = 1 σ 0 = γ ε 0 ω p 2 .
R s = ρ 0 δ = γ δ ε 0 ω p 2 .

Metrics