Abstract

We have designed and assembled an instrument for objective measurement of the eye’s wave aberrations for different wavelengths with no modifications in the measurement path. The system consists of a Hartmann-Shack wave-front sensor and a Xe-white-light lamp in combination with a set of interference filters used to sequentially select the measurement wavelength. To show the capabilities of the system and its reliability for measuring at different wavelengths, the ocular aberrations were measured in three subjects at 440, 488, 532, 633 and 694 nm, basically covering the whole visible spectrum. Even for the shortest wavelengths, the illumination level was always several orders of magnitude below the safety limits. The longitudinal chromatic aberration estimates and the wavelength dependence of coma and spherical aberration, as examples of higher-order aberration terms, were compared to the predictions of a chromatic eye model, with good agreement. To our knowledge, this is the first report of a device to objectively determine the spectral fluctuations in the ocular wavefront.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tscherning, "Die monochromatischen Abberationen des menschlichen Auges," Z. Psychol. Physiol. Sinn. 6, 456-471 (1894).
  2. M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biofizika 6, 776-795 (1961).
    [PubMed]
  3. B. Howland and H. C. Howland, "Subjective measurement of high-order aberrations of the eye," Science 193, 580-582 (1976).
    [CrossRef] [PubMed]
  4. R. H. Webb, C. M. Penney, and K. P. Thompson, "Measurement of ocular local wavefront distortion with a spatially resolved refractometer," Appl. Opt. 31, 3678-3686 (1992).
    [CrossRef] [PubMed]
  5. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, "Measurement of the wave-front aberration of the eye using a fast psychophysical procedure," J. Opt. Soc. Am. A 15, 2449-2456 (1998).
    [CrossRef]
  6. P. M. Prieto, F. Vargas-Martin, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
    [CrossRef]
  7. R. H. Webb, C. M. Penney, J. Sobiech, P. R. Staver, and S. A. Burns, "SSR (Spatially Resolved Refractometer): A Null-Seeking Aberrometer," Appl. Opt. 42, 736-744 (2003).
    [CrossRef] [PubMed]
  8. J. Z. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  9. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
    [CrossRef]
  10. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
    [CrossRef]
  11. G. Walsh, W. N. Charman, and H. C. Howland, "Objective technique for the determination of monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 1, 987-992 (1984).
    [CrossRef] [PubMed]
  12. R. Navarro and E. Moreno-Barriuso, "Laser ray-tracing method for optical testing," Opt. Lett. 24, 951-953 (1999).
    [CrossRef]
  13. M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg. 16, S570-S571 (2000).
    [PubMed]
  14. S. MacRae and M. Fujieda, "Slit Skiascopic-guided ablation using the Nidek laser," J. Refract. Surg. 16, S576-S580 (2000).
    [PubMed]
  15. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, "Extended source pyramid wave-front sensor for the human eye," Opt. Express 10, 419-428 (2002), http://www.opticsexpress.org/abstract.cfm?URI=oe-10-9-419.
    [PubMed]
  16. F. Diaz-Douton, J. Pujol, M. Arjona, and S. O. Luque, "Curvature sensor for ocular wavefront measurement," Opt. Lett. 31, 2245-2247 (2006).
    [CrossRef] [PubMed]
  17. Y. U. Ogboso and H. E. Bedell, "Magnitude of lateral chromatic aberration across the retina of the human-eye," J. Opt. Soc. Am. A 4, 1666-1672 (1987).
    [CrossRef] [PubMed]
  18. P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human-eye," Vision Res. 30, 187-206 (1990).
    [CrossRef] [PubMed]
  19. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
    [CrossRef] [PubMed]
  20. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, "Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle-psi in a population of young-adult eyes," J. Opt. Soc. Am. A 12, 2348-2357 (1995).
    [CrossRef]
  21. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
    [CrossRef]
  22. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes," Vision Res. 41, 3861-3871 (2001).
    [CrossRef] [PubMed]
  23. P. Artal, S. Marcos, R. Navarro, and D. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195- (1995).
    [CrossRef]
  24. A. Ames, Jr. and C. A. Proctor, "Dioptrics of the eye," J. Opt. Soc. Am. 5, 22-84 (1921).
    [CrossRef]
  25. G. Wald and D. R. Griffin, "The change in refractive power of human eye in dim and bright light," J. Opt. Soc. Am. 37, 321-336 (1947).
    [CrossRef] [PubMed]
  26. R. E. Bedford and G. Wyszecki, "Axial chromatic aberration of the human eye," J. Opt. Soc. Am. 47, 564-565 (1957).
    [CrossRef] [PubMed]
  27. W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
    [CrossRef] [PubMed]
  28. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988).
    [CrossRef] [PubMed]
  29. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The Chromatic Eye: a new reduced eye model of ocular chromatic aberration in humans," Appl. Opt. 31, 3594-3600 (1992).
    [CrossRef] [PubMed]
  30. M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 38, 513-522 (1998).
    [CrossRef] [PubMed]
  31. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
    [CrossRef] [PubMed]
  32. A. Seidemann and F. Schaeffel, "Effects of longitudinal chromatic aberration on accommodation and emmetropization," Vision Res. 42, 2409-2417 (2002).
    [CrossRef] [PubMed]
  33. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, "Wide-angle chromatic aberration corrector for the human eye," J. Opt. Soc. Am. A 24, 1538-1544 (2007).
    [CrossRef]
  34. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Opt. Vis. Sci. 80, 26-35 (2003).
    [CrossRef]
  35. E. J. Fernandez, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-2-400.
    [CrossRef] [PubMed]
  36. F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," Appl. Opt. 28, 1061-1067 (1989).
    [CrossRef] [PubMed]
  37. International Commission on Non-Ionizing Radiation Protection (ICNIRP), "Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 µm)," Health Phys. 73, 539-554 (1997).
    [PubMed]
  38. A. Guirao, P. Artal, "Corneal wave aberration from videokeratography: accuracy and limitations of the procedure," J. Opt. Soc. Am. A 17, 955-965 (2000).
    [CrossRef]

2007 (1)

2006 (1)

2005 (1)

2003 (2)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Opt. Vis. Sci. 80, 26-35 (2003).
[CrossRef]

R. H. Webb, C. M. Penney, J. Sobiech, P. R. Staver, and S. A. Burns, "SSR (Spatially Resolved Refractometer): A Null-Seeking Aberrometer," Appl. Opt. 42, 736-744 (2003).
[CrossRef] [PubMed]

2002 (4)

P. M. Prieto, F. Vargas-Martin, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
[CrossRef]

I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, "Extended source pyramid wave-front sensor for the human eye," Opt. Express 10, 419-428 (2002), http://www.opticsexpress.org/abstract.cfm?URI=oe-10-9-419.
[PubMed]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

A. Seidemann and F. Schaeffel, "Effects of longitudinal chromatic aberration on accommodation and emmetropization," Vision Res. 42, 2409-2417 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

2000 (4)

A. Guirao, P. Artal, "Corneal wave aberration from videokeratography: accuracy and limitations of the procedure," J. Opt. Soc. Am. A 17, 955-965 (2000).
[CrossRef]

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg. 16, S570-S571 (2000).
[PubMed]

S. MacRae and M. Fujieda, "Slit Skiascopic-guided ablation using the Nidek laser," J. Refract. Surg. 16, S576-S580 (2000).
[PubMed]

P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

1999 (2)

R. Navarro and E. Moreno-Barriuso, "Laser ray-tracing method for optical testing," Opt. Lett. 24, 951-953 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

1998 (2)

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, "Measurement of the wave-front aberration of the eye using a fast psychophysical procedure," J. Opt. Soc. Am. A 15, 2449-2456 (1998).
[CrossRef]

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

1997 (2)

J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
[CrossRef]

International Commission on Non-Ionizing Radiation Protection (ICNIRP), "Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 µm)," Health Phys. 73, 539-554 (1997).
[PubMed]

1995 (2)

1994 (1)

1992 (2)

1990 (2)

P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human-eye," Vision Res. 30, 187-206 (1990).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (1)

1987 (1)

1984 (1)

1976 (2)

W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

B. Howland and H. C. Howland, "Subjective measurement of high-order aberrations of the eye," Science 193, 580-582 (1976).
[CrossRef] [PubMed]

1961 (1)

M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biofizika 6, 776-795 (1961).
[PubMed]

1957 (1)

1947 (1)

1921 (1)

1894 (1)

M. Tscherning, "Die monochromatischen Abberationen des menschlichen Auges," Z. Psychol. Physiol. Sinn. 6, 456-471 (1894).

Ames, A.

Arjona, M.

Artal, P.

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

Bedell, H. E.

Bedford, R. E.

Benny, Y.

Bille, J. F.

Bradley, A.

Burns, S. A.

R. H. Webb, C. M. Penney, J. Sobiech, P. R. Staver, and S. A. Burns, "SSR (Spatially Resolved Refractometer): A Null-Seeking Aberrometer," Appl. Opt. 42, 736-744 (2003).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martin, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
[CrossRef]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, "Measurement of the wave-front aberration of the eye using a fast psychophysical procedure," J. Opt. Soc. Am. A 15, 2449-2456 (1998).
[CrossRef]

Campbell, M. C. W.

P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human-eye," Vision Res. 30, 187-206 (1990).
[CrossRef] [PubMed]

Charman, W. N.

G. Walsh, W. N. Charman, and H. C. Howland, "Objective technique for the determination of monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 1, 987-992 (1984).
[CrossRef] [PubMed]

W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

Chisholm, W.

Delori, F. C.

Diaz-Douton, F.

Diaz-Santana, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Opt. Vis. Sci. 80, 26-35 (2003).
[CrossRef]

Drexler, W.

Fernandez, E. J.

Fujieda, M.

S. MacRae and M. Fujieda, "Slit Skiascopic-guided ablation using the Nidek laser," J. Refract. Surg. 16, S576-S580 (2000).
[PubMed]

Goelz, S.

Griffin, D. R.

Grimm, B.

Guirao, A.

He, J. C.

Hermann, B.

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

Howland, B.

B. Howland and H. C. Howland, "Subjective measurement of high-order aberrations of the eye," Science 193, 580-582 (1976).
[CrossRef] [PubMed]

Howland, H. C.

Iglesias, I.

Jennings, J. A. M.

W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

Julien, Y.

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg. 16, S570-S571 (2000).
[PubMed]

Krinke, H. E.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg. 16, S570-S571 (2000).
[PubMed]

Lara-Saucedo, D.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Opt. Vis. Sci. 80, 26-35 (2003).
[CrossRef]

Liang, J.

Liang, J. Z.

Lidkea, B.

Llorente, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Opt. Vis. Sci. 80, 26-35 (2003).
[CrossRef]

Losada, M. A.

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

Luque, S. O.

MacRae, S.

S. MacRae and M. Fujieda, "Slit Skiascopic-guided ablation using the Nidek laser," J. Refract. Surg. 16, S576-S580 (2000).
[PubMed]

Manzanera, S.

Marcos, S.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Opt. Vis. Sci. 80, 26-35 (2003).
[CrossRef]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, "Measurement of the wave-front aberration of the eye using a fast psychophysical procedure," J. Opt. Soc. Am. A 15, 2449-2456 (1998).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, and D. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195- (1995).
[CrossRef]

McLellan, J. S.

P. M. Prieto, F. Vargas-Martin, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
[CrossRef]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

Mierdel, P.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg. 16, S570-S571 (2000).
[PubMed]

Moreno-Barriuso, E.

R. Navarro and E. Moreno-Barriuso, "Laser ray-tracing method for optical testing," Opt. Lett. 24, 951-953 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Mrochen, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg. 16, S570-S571 (2000).
[PubMed]

Navarro, R.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

R. Navarro and E. Moreno-Barriuso, "Laser ray-tracing method for optical testing," Opt. Lett. 24, 951-953 (1999).
[CrossRef]

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

P. Artal, S. Marcos, R. Navarro, and D. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195- (1995).
[CrossRef]

Ogboso, Y. U.

Penney, C. M.

Pflibsen, K. P.

Prieto, P. M.

Proctor, C. A.

Pujol, J.

Ragazzoni, R.

Ribak, E. N.

Rynders, M.

Rynders, M. C.

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

Schaeffel, F.

A. Seidemann and F. Schaeffel, "Effects of longitudinal chromatic aberration on accommodation and emmetropization," Vision Res. 42, 2409-2417 (2002).
[CrossRef] [PubMed]

Seidemann, A.

A. Seidemann and F. Schaeffel, "Effects of longitudinal chromatic aberration on accommodation and emmetropization," Vision Res. 42, 2409-2417 (2002).
[CrossRef] [PubMed]

Seiler, T.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg. 16, S570-S571 (2000).
[PubMed]

Simonet, P.

P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human-eye," Vision Res. 30, 187-206 (1990).
[CrossRef] [PubMed]

Smirnov, M. S.

M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biofizika 6, 776-795 (1961).
[PubMed]

Sobiech, J.

Staver, P. R.

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

Thibos, L. N.

Thompson, K. P.

Tscherning, M.

M. Tscherning, "Die monochromatischen Abberationen des menschlichen Auges," Z. Psychol. Physiol. Sinn. 6, 456-471 (1894).

Unterhuber, A.

Vargas-Martin, F.

Wald, G.

Walsh, G.

Webb, R. H.

Williams, D.

Williams, D. R.

Wyszecki, G.

Ye, M.

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The Chromatic Eye: a new reduced eye model of ocular chromatic aberration in humans," Appl. Opt. 31, 3594-3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

Zhang, X. X.

Appl. Opt. (4)

Biofizika (1)

M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biofizika 6, 776-795 (1961).
[PubMed]

Health Phys. (1)

International Commission on Non-Ionizing Radiation Protection (ICNIRP), "Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 µm)," Health Phys. 73, 539-554 (1997).
[PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (12)

P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

A. Guirao, P. Artal, "Corneal wave aberration from videokeratography: accuracy and limitations of the procedure," J. Opt. Soc. Am. A 17, 955-965 (2000).
[CrossRef]

J. Z. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
[CrossRef]

G. Walsh, W. N. Charman, and H. C. Howland, "Objective technique for the determination of monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 1, 987-992 (1984).
[CrossRef] [PubMed]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, "Measurement of the wave-front aberration of the eye using a fast psychophysical procedure," J. Opt. Soc. Am. A 15, 2449-2456 (1998).
[CrossRef]

J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
[CrossRef]

Y. U. Ogboso and H. E. Bedell, "Magnitude of lateral chromatic aberration across the retina of the human-eye," J. Opt. Soc. Am. A 4, 1666-1672 (1987).
[CrossRef] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

P. Artal, S. Marcos, R. Navarro, and D. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195- (1995).
[CrossRef]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, "Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle-psi in a population of young-adult eyes," J. Opt. Soc. Am. A 12, 2348-2357 (1995).
[CrossRef]

P. M. Prieto, F. Vargas-Martin, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
[CrossRef]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, "Wide-angle chromatic aberration corrector for the human eye," J. Opt. Soc. Am. A 24, 1538-1544 (2007).
[CrossRef]

J. Refract. Surg. (2)

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg. 16, S570-S571 (2000).
[PubMed]

S. MacRae and M. Fujieda, "Slit Skiascopic-guided ablation using the Nidek laser," J. Refract. Surg. 16, S576-S580 (2000).
[PubMed]

Nature (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Vis. Sci. (1)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Opt. Vis. Sci. 80, 26-35 (2003).
[CrossRef]

Science (1)

B. Howland and H. C. Howland, "Subjective measurement of high-order aberrations of the eye," Science 193, 580-582 (1976).
[CrossRef] [PubMed]

Vision Res. (7)

A. Seidemann and F. Schaeffel, "Effects of longitudinal chromatic aberration on accommodation and emmetropization," Vision Res. 42, 2409-2417 (2002).
[CrossRef] [PubMed]

P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human-eye," Vision Res. 30, 187-206 (1990).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 38, 513-522 (1998).
[CrossRef] [PubMed]

Z. Psychol. Physiol. Sinn. (1)

M. Tscherning, "Die monochromatischen Abberationen des menschlichen Auges," Z. Psychol. Physiol. Sinn. 6, 456-471 (1894).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Layout of the experimental apparatus. An H-S wave-front sensor is used to measure ocular aberrations. The light source is a white-light lamp and the measurement wavelength is selected by means of interchangeable interference filters. See the text for further details.

Fig. 2.
Fig. 2.

Left: Exposure time settings. Center: Comparison between source radiance (light bars) and hazardous limits for incoherent sources (dark bars). Right: average spot intensity.

Fig. 3.
Fig. 3.

Wavefront chromatic differences for subject EA. Top row: WA for each wavelength, including the defocus term, which has been arbitrarily set to 0 for 532 nm. Central row: Difference between the WA for each wavelength and the WA for 532 nm, arbitrarily taken as reference. Bottom row: higher order chromatic fluctuations obtained by removing the individual defocus term from each WA map in the central row. Pupil size was 6 mm.

Fig. 4.
Fig. 4.

LCA estimates calculated as differences in focus with respect to 532 nm. Open symbols: individual values. Solid circles: mean values, with the standard deviation as error bar. Dotted line: Indiana model eye predictions shifted to cancel out the defocus for 532 nm.

Fig. 5.
Fig. 5.

Chromatic differences in spherical aberration for a 6-mm pupil. Reference wavelength was 532 nm. Open symbols: individual values. Solid circles: mean values, with standard deviation as error bar. Dotted line: Indiana model eye predictions shifted to cancel out the spherical aberration for 532 nm.

Fig. 6.
Fig. 6.

Chromatic differences in vertical coma for a 6-mm pupil. Reference wavelength was 532 nm. Open symbols: individual values. Solid circles: mean values, with the standard deviation as error bar. Dotted line: Indiana model eye predictions.

Metrics