Abstract

We present all-optical switching in oxygen ion implanted silicon microring resonators. Time-dependent signal modulation is achieved by shifting resonance wavelengths of microrings through the plasma dispersion effect via femtosecond photogeneration of electron-hole pairs and subsequent trapping at implantation induced defect states. We observe a switching time of 25 ps at extinction ratio of 9 dB and free carrier lifetime of 15 ps for an implantation dose of 7×1012 cm-2. The influence of implantation dose on the switching speed and additional propagation losses of the silicon waveguide – the latter as a result of implantation induced amorphization – is carefully evaluated and in good agreement with theoretical predictions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu and M. Lipson, "All-optical logic based on silicon micro-ring resonators," Opt. Express 15, 924-929 (2007).
    [CrossRef]
  2. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
    [CrossRef] [PubMed]
  3. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, "Nonlinear silicon-on-insulator waveguides for all-optical signal processing," Opt. Express 15, 5976-5990 (2007).
    [CrossRef] [PubMed]
  4. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
    [CrossRef]
  5. J. Niehusmann, A. Vörckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004).
    [CrossRef]
  6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
    [CrossRef] [PubMed]
  7. Q. Xu, S. Anipatruni, B. Schmidt, J. Hakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express 15, 430-436 (2007).
    [CrossRef] [PubMed]
  8. S. Manipatruni, Q. Xu, and M. Lipson, "PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator," Opt. Express 15, 13035-13042 (2007).
    [CrossRef] [PubMed]
  9. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
    [CrossRef] [PubMed]
  10. T. Tanabe, K. N. A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]
  11. Q. Xu, V. R. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 30, 2733-2735 (2005).
    [CrossRef] [PubMed]
  12. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  13. P. Dong, S. F. Preble, and M. Lipson, "All-optical compact silicon comb switch," Opt. Express 15, 9600-9605 (2007).
    [CrossRef] [PubMed]
  14. F. C. Ndi, J. Toulouse, T. Hodson, and D. Prather, "All optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect," Opt. Lett. 30, 2254-2256 (2005).
    [CrossRef] [PubMed]
  15. Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical netwotks," Nat. Photonics Advance online Publication March (2008).
  16. D. Dimitropolous, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photo generated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 71, 115 (2005).
  17. J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr, S. J. Mc Nab, and Y. A. Vlasov, "Spontaneous Raman scattering in ultrasmall silicon waveguides," Opt. Lett. 29, 2755-2757 (2004).
    [CrossRef] [PubMed]
  18. Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
    [CrossRef] [PubMed]
  19. F. E. Doany, D. Grischkowsky, and C.-C. Chi, "Carrier lifetime versus ion-implantation dose in silicon on sapphire," Appl. Phys. Lett. 50, 460-462 (1987).
    [CrossRef]
  20. M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed all-optical switching in ion implanted silicon-on-insulator microring resonators," Opt. Lett. 32, 2046-2048 (2007).
    [CrossRef] [PubMed]
  21. A. Vörckel, M. Mönster, W. Henschel, P. Haring Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," Photon Technol. Lett. 15, 921-923 (2003).
    [CrossRef]
  22. R. A. Soref and B. R. Bennet, "Electrooptical effect in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  23. P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, "Optical attenuation in defect enginnered silicon rib waveguides," J. Appl. Phys. 99, 073101-073101-7 (2006).
    [CrossRef]
  24. P. G. Coleman, C. P. Burrows, and A. P. Knights, "Simple expression for vacancy concentrations at half ion range following MeV ion implantation," Appl. Phys. Lett. 80, 947-949 (2002).
    [CrossRef]
  25. A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, "Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon," Appl. Surf. Sci. 46, 446-450 (1990).
    [CrossRef]

2007

2006

Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
[CrossRef] [PubMed]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
[CrossRef] [PubMed]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, "Optical attenuation in defect enginnered silicon rib waveguides," J. Appl. Phys. 99, 073101-073101-7 (2006).
[CrossRef]

2005

2004

2003

A. Vörckel, M. Mönster, W. Henschel, P. Haring Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," Photon Technol. Lett. 15, 921-923 (2003).
[CrossRef]

2002

P. G. Coleman, C. P. Burrows, and A. P. Knights, "Simple expression for vacancy concentrations at half ion range following MeV ion implantation," Appl. Phys. Lett. 80, 947-949 (2002).
[CrossRef]

1990

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, "Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon," Appl. Surf. Sci. 46, 446-450 (1990).
[CrossRef]

1987

R. A. Soref and B. R. Bennet, "Electrooptical effect in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

F. E. Doany, D. Grischkowsky, and C.-C. Chi, "Carrier lifetime versus ion-implantation dose in silicon on sapphire," Appl. Phys. Lett. 50, 460-462 (1987).
[CrossRef]

Almeida, V. R.

Q. Xu, V. R. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 30, 2733-2735 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Anipatruni, S.

Baehr-Jones, T.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bennet, B. R.

R. A. Soref and B. R. Bennet, "Electrooptical effect in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Bolten, J.

Burrows, C. P.

P. G. Coleman, C. P. Burrows, and A. P. Knights, "Simple expression for vacancy concentrations at half ion range following MeV ion implantation," Appl. Phys. Lett. 80, 947-949 (2002).
[CrossRef]

Chen, B.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Chi, C.-C.

F. E. Doany, D. Grischkowsky, and C.-C. Chi, "Carrier lifetime versus ion-implantation dose in silicon on sapphire," Appl. Phys. Lett. 50, 460-462 (1987).
[CrossRef]

Claps, R.

D. Dimitropolous, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photo generated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 71, 115 (2005).

Coleman, P. G.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, "Optical attenuation in defect enginnered silicon rib waveguides," J. Appl. Phys. 99, 073101-073101-7 (2006).
[CrossRef]

P. G. Coleman, C. P. Burrows, and A. P. Knights, "Simple expression for vacancy concentrations at half ion range following MeV ion implantation," Appl. Phys. Lett. 80, 947-949 (2002).
[CrossRef]

Dadap, J. I.

Dalton, L.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Dekker, R.

Dimitropolous, D.

D. Dimitropolous, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photo generated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 71, 115 (2005).

Doany, F. E.

F. E. Doany, D. Grischkowsky, and C.-C. Chi, "Carrier lifetime versus ion-implantation dose in silicon on sapphire," Appl. Phys. Lett. 50, 460-462 (1987).
[CrossRef]

Dong, P.

Doylend, J. K.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, "Optical attenuation in defect enginnered silicon rib waveguides," J. Appl. Phys. 99, 073101-073101-7 (2006).
[CrossRef]

Driessen, A.

Espinola, R. L.

Esser, A.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, "Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon," Appl. Surf. Sci. 46, 446-450 (1990).
[CrossRef]

Först, M.

Foster, P. J.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, "Optical attenuation in defect enginnered silicon rib waveguides," J. Appl. Phys. 99, 073101-073101-7 (2006).
[CrossRef]

Freude, W.

Grischkowsky, D.

F. E. Doany, D. Grischkowsky, and C.-C. Chi, "Carrier lifetime versus ion-implantation dose in silicon on sapphire," Appl. Phys. Lett. 50, 460-462 (1987).
[CrossRef]

Hakya, J.

Haring Bolivar, P.

J. Niehusmann, A. Vörckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004).
[CrossRef]

A. Vörckel, M. Mönster, W. Henschel, P. Haring Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," Photon Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Harvard, K.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Henschel, W.

J. Niehusmann, A. Vörckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004).
[CrossRef]

A. Vörckel, M. Mönster, W. Henschel, P. Haring Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," Photon Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Hochberg, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Hodson, T.

Inokawa, H.

T. Tanabe, K. N. A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Jacome, L.

Jalali, B.

D. Dimitropolous, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photo generated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 71, 115 (2005).

Jen, A. K. Y.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Jhaveri, R.

D. Dimitropolous, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photo generated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 71, 115 (2005).

Knights, A. P.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, "Optical attenuation in defect enginnered silicon rib waveguides," J. Appl. Phys. 99, 073101-073101-7 (2006).
[CrossRef]

P. G. Coleman, C. P. Burrows, and A. P. Knights, "Simple expression for vacancy concentrations at half ion range following MeV ion implantation," Appl. Phys. Lett. 80, 947-949 (2002).
[CrossRef]

Koos, C.

Kuramochi, E.

T. Tanabe, K. N. A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Kurz, H.

M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed all-optical switching in ion implanted silicon-on-insulator microring resonators," Opt. Lett. 32, 2046-2048 (2007).
[CrossRef] [PubMed]

J. Niehusmann, A. Vörckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004).
[CrossRef]

A. Vörckel, M. Mönster, W. Henschel, P. Haring Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," Photon Technol. Lett. 15, 921-923 (2003).
[CrossRef]

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, "Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon," Appl. Surf. Sci. 46, 446-450 (1990).
[CrossRef]

Kütt, W.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, "Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon," Appl. Surf. Sci. 46, 446-450 (1990).
[CrossRef]

Lawson, R.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Leuthold, J.

Lipson, M.

Liu, Y.

Luo, J.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Maidorn, G.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, "Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon," Appl. Surf. Sci. 46, 446-450 (1990).
[CrossRef]

Manipatruni, S.

Mascher, P.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, "Optical attenuation in defect enginnered silicon rib waveguides," J. Appl. Phys. 99, 073101-073101-7 (2006).
[CrossRef]

Mc Nab, S. J.

Mönster, M.

A. Vörckel, M. Mönster, W. Henschel, P. Haring Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," Photon Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Moormann, C.

Ndi, F. C.

Niehusmann, J.

Notomi, M.

T. Tanabe, K. N. A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Osgood, R. M.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Plötzing, T.

Poulton, C.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
[CrossRef] [PubMed]

Prather, D.

Preble, S. F.

Scherer, A.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Schmidt, B.

Schmidt, B. S.

Shearn, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Shi, Z.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Shinya, K. N. A.

T. Tanabe, K. N. A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennet, "Electrooptical effect in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Strahnen, M.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, "Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon," Appl. Surf. Sci. 46, 446-450 (1990).
[CrossRef]

Sullivan, P.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Tanabe, T.

T. Tanabe, K. N. A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Toulouse, J.

Tsang, H. K.

Vlasov, Y. A.

Vörckel, A.

J. Niehusmann, A. Vörckel, P. Haring Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004).
[CrossRef]

A. Vörckel, M. Mönster, W. Henschel, P. Haring Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," Photon Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Wahlbrink, T.

Wang, G.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Woo, J. C. S.

D. Dimitropolous, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photo generated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 71, 115 (2005).

Xu, Q.

Appl. Phys. Lett.

T. Tanabe, K. N. A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

D. Dimitropolous, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photo generated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 71, 115 (2005).

F. E. Doany, D. Grischkowsky, and C.-C. Chi, "Carrier lifetime versus ion-implantation dose in silicon on sapphire," Appl. Phys. Lett. 50, 460-462 (1987).
[CrossRef]

P. G. Coleman, C. P. Burrows, and A. P. Knights, "Simple expression for vacancy concentrations at half ion range following MeV ion implantation," Appl. Phys. Lett. 80, 947-949 (2002).
[CrossRef]

Appl. Surf. Sci.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, "Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon," Appl. Surf. Sci. 46, 446-450 (1990).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and B. R. Bennet, "Electrooptical effect in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

J. Appl. Phys.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, "Optical attenuation in defect enginnered silicon rib waveguides," J. Appl. Phys. 99, 073101-073101-7 (2006).
[CrossRef]

Nat. Mat.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photon Technol. Lett.

A. Vörckel, M. Mönster, W. Henschel, P. Haring Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," Photon Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Other

Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical netwotks," Nat. Photonics Advance online Publication March (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) SEM image of one investigated symmetrically coupled microring resonator with a ring radius of 5 µm and a coupling gap of 150 nm. (b) Schematic cross sectional view of the SOI waveguide.

Fig.2.
Fig.2.

(a) Simulated mode profile of the SOI waveguide for TM polarization, shown is the absolute value of the dominant component of the electric field |Ey(x,y)|. (b) Simulated axial oxygen ion distribution inside the silicon waveguide at an implantation voltage of 160 keV and calculated TM mode profile along axial direction at the center of the waveguide.

Fig. 3.
Fig. 3.

Measured normalized transmission characteristics of through and drop channel of one resonance of the investigated microring resonator. (a) Optical transmission before ion implantation. (b) Optical transmission after 7×1012 cm-2 oxygen ion implantation.

Fig. 4.
Fig. 4.

Schematic view of the experimental setup used for the time resolved measurements of the implanted microring resonator structure.

Fig. 5.
Fig. 5.

Intensity plot of the time-resolved spectral response of the microring resonator at the drop channel after optical excitation. The intensity is color-scaled in linear arbitrary units. The oxygen ion implantation dose of this device is 7×1012cm-2.

Fig. 6.
Fig. 6.

(a) Time-resolved center wavelength of the drop channel (black) and corresponding exponential fit (red line). (b) Time-resolved modulation for an operating wavelength of 1554.364 nm. Both data are extracted from Fig. 5.

Fig. 7.
Fig. 7.

(a)-(c) Time-dependent center wavelength shifts Δλ (black) and corresponding exponential fits (red) for mircroring resonators implanted with different implantation doses of (a) 5×1012cm-2, (b) 1×1012cm-2 and (c) 3×1011cm-2. Extracted carrier lifetimes τ are noted. (d) Normalized wavelength shifts for all four implanted microring resonators.

Fig. 8.
Fig. 8.

Time-dependent modulation characteristics for mircroring resonators implanted with different implantation doses of (a) 5×1012cm-2, (b) 1×1012cm-2 and (c) 3×1011cm-2. (d) Normalized modulation of all four implanted microring resonators.

Fig. 9.
Fig. 9.

(a) Measured inverse carrier lifetime over implantation dose for investigated microring resonators (red circles) and unstructured SOI samples (black squares), the dashed line is only a guide for the eyes. (b) Additional by oxygen implantation introduced losses for the different implantation doses σ. The black solid line represents a σ0.63 fit of the measured data and the inset shows the same graph on a linear scaling of the x-axis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = ( 8.8 × 10 22 Δ N e + 8.5 × 10 18 Δ N h 0.8 )

Metrics