Abstract

We demonstrate that the left-handed materials (LHMs) with unity dendritic unit cells arrayed in disorder state present still passband and negative refractive. The resonance behavior of LHMs in disturbed periodic lattice, quasi-periodic lattice and random array are experimentally investigated. Employing amended retrieval method, the LHMs with disordered state exhibits a negative index of refraction. Basing on such LHMs lens, the subwavelength imaging experiment give a clearly point image with a full wave at half maximum width of 0.4 λ at 9.3 GHz. Similarly, the power field distribution of “N” shaped antenna is measured beyond the diffraction limit.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  2. J. B. Pendry, A. J. Holden, and D. J. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  3. R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  4. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  6. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-47 (2007).
    [CrossRef] [PubMed]
  7. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
    [CrossRef] [PubMed]
  8. H. Liu and X. P. Zhao, "Magnetic response of dendritic structures at infrared frequencies," Solid State Commun. 140, 9-13 (2006).
    [CrossRef]
  9. H. Liu and X. P. Zhao, "Metamaterials with dendriticlike structure at infrared frequencies," Appl. Phys. Lett. 90, 191904 (2007).
    [CrossRef]
  10. X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, and X. P. Zhao, "Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials," Opt. Express 14, 7188-7197 (2006).
    [CrossRef] [PubMed]
  11. Y. Yao and X. P. Zhao, "Multilevel dendritic structure with simultaneously negative permeability and permittivity," J. Appl. Phys. 101, 124904 (2007).
    [CrossRef]
  12. X. Zhou and X. P. Zhao, "Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability," Appl. Phys. Lett. 91, 181908 (2007).
    [CrossRef]
  13. J. Gollub, T. Hand, S. Sajuyigbe, S. Mendonca, S. Cummer, and D. R. Smith, "Characterizing the effects of disorder in metamaterial," Appl. Phys. Lett. 91, 162907 (2007).
    [CrossRef]
  14. K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express 12, 5896-5901 (2004).
    [CrossRef] [PubMed]
  15. C. Mitsumata and S. Tomita, "Negative permeability of magnetic nanocomposite films for designing left-handed metamaterials," Appl. Phys. Lett. 91, 223104 (2007).
    [CrossRef]
  16. X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
    [CrossRef]
  17. H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, and J. A. Kong, "Metamaterial with randomized patterns for negative refraction of electromagnetic waves," Appl. Phys. Lett. 88, 031908 (2006).
    [CrossRef]
  18. D. Wang, J. Huangfu, L. Ran, H. Chen, T. M. Grzegorczyk, and J. A. Kong, "Measurement of negative permittivity and permeability from experimental transmission and reflection with effects of cell misalignment," J. Appl. Phys. 99, 123114 (2006).
    [CrossRef]
  19. Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
    [CrossRef]
  20. P. Gay-Balmaz and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929-2936 (2002).
    [CrossRef]

2007 (7)

H. Liu and X. P. Zhao, "Metamaterials with dendriticlike structure at infrared frequencies," Appl. Phys. Lett. 90, 191904 (2007).
[CrossRef]

Y. Yao and X. P. Zhao, "Multilevel dendritic structure with simultaneously negative permeability and permittivity," J. Appl. Phys. 101, 124904 (2007).
[CrossRef]

X. Zhou and X. P. Zhao, "Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability," Appl. Phys. Lett. 91, 181908 (2007).
[CrossRef]

J. Gollub, T. Hand, S. Sajuyigbe, S. Mendonca, S. Cummer, and D. R. Smith, "Characterizing the effects of disorder in metamaterial," Appl. Phys. Lett. 91, 162907 (2007).
[CrossRef]

C. Mitsumata and S. Tomita, "Negative permeability of magnetic nanocomposite films for designing left-handed metamaterials," Appl. Phys. Lett. 91, 223104 (2007).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-47 (2007).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

2006 (5)

H. Liu and X. P. Zhao, "Magnetic response of dendritic structures at infrared frequencies," Solid State Commun. 140, 9-13 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, and J. A. Kong, "Metamaterial with randomized patterns for negative refraction of electromagnetic waves," Appl. Phys. Lett. 88, 031908 (2006).
[CrossRef]

D. Wang, J. Huangfu, L. Ran, H. Chen, T. M. Grzegorczyk, and J. A. Kong, "Measurement of negative permittivity and permeability from experimental transmission and reflection with effects of cell misalignment," J. Appl. Phys. 99, 123114 (2006).
[CrossRef]

X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, and X. P. Zhao, "Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials," Opt. Express 14, 7188-7197 (2006).
[CrossRef] [PubMed]

2005 (2)

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

2004 (1)

2002 (1)

P. Gay-Balmaz and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929-2936 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, and D. J. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Aydin, K.

Chen, H.

H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, and J. A. Kong, "Metamaterial with randomized patterns for negative refraction of electromagnetic waves," Appl. Phys. Lett. 88, 031908 (2006).
[CrossRef]

D. Wang, J. Huangfu, L. Ran, H. Chen, T. M. Grzegorczyk, and J. A. Kong, "Measurement of negative permittivity and permeability from experimental transmission and reflection with effects of cell misalignment," J. Appl. Phys. 99, 123114 (2006).
[CrossRef]

Cummer, S.

J. Gollub, T. Hand, S. Sajuyigbe, S. Mendonca, S. Cummer, and D. R. Smith, "Characterizing the effects of disorder in metamaterial," Appl. Phys. Lett. 91, 162907 (2007).
[CrossRef]

Economou, E. N.

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Etrich, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-47 (2007).
[CrossRef] [PubMed]

Fu, Q. H.

X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, and X. P. Zhao, "Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials," Opt. Express 14, 7188-7197 (2006).
[CrossRef] [PubMed]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Gay-Balmaz, P.

P. Gay-Balmaz and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929-2936 (2002).
[CrossRef]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-47 (2007).
[CrossRef] [PubMed]

Gollub, J.

J. Gollub, T. Hand, S. Sajuyigbe, S. Mendonca, S. Cummer, and D. R. Smith, "Characterizing the effects of disorder in metamaterial," Appl. Phys. Lett. 91, 162907 (2007).
[CrossRef]

Grzegorczyk, T. M.

D. Wang, J. Huangfu, L. Ran, H. Chen, T. M. Grzegorczyk, and J. A. Kong, "Measurement of negative permittivity and permeability from experimental transmission and reflection with effects of cell misalignment," J. Appl. Phys. 99, 123114 (2006).
[CrossRef]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-47 (2007).
[CrossRef] [PubMed]

Guven, K.

Hand, T.

J. Gollub, T. Hand, S. Sajuyigbe, S. Mendonca, S. Cummer, and D. R. Smith, "Characterizing the effects of disorder in metamaterial," Appl. Phys. Lett. 91, 162907 (2007).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, and D. J. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Huangfu, J.

H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, and J. A. Kong, "Metamaterial with randomized patterns for negative refraction of electromagnetic waves," Appl. Phys. Lett. 88, 031908 (2006).
[CrossRef]

D. Wang, J. Huangfu, L. Ran, H. Chen, T. M. Grzegorczyk, and J. A. Kong, "Measurement of negative permittivity and permeability from experimental transmission and reflection with effects of cell misalignment," J. Appl. Phys. 99, 123114 (2006).
[CrossRef]

Jiang, Q.

H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, and J. A. Kong, "Metamaterial with randomized patterns for negative refraction of electromagnetic waves," Appl. Phys. Lett. 88, 031908 (2006).
[CrossRef]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-47 (2007).
[CrossRef] [PubMed]

Kang, L.

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Kong, J. A.

H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, and J. A. Kong, "Metamaterial with randomized patterns for negative refraction of electromagnetic waves," Appl. Phys. Lett. 88, 031908 (2006).
[CrossRef]

D. Wang, J. Huangfu, L. Ran, H. Chen, T. M. Grzegorczyk, and J. A. Kong, "Measurement of negative permittivity and permeability from experimental transmission and reflection with effects of cell misalignment," J. Appl. Phys. 99, 123114 (2006).
[CrossRef]

Koschny, Th.

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Lederer, F.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Liu, H.

H. Liu and X. P. Zhao, "Metamaterials with dendriticlike structure at infrared frequencies," Appl. Phys. Lett. 90, 191904 (2007).
[CrossRef]

H. Liu and X. P. Zhao, "Magnetic response of dendritic structures at infrared frequencies," Solid State Commun. 140, 9-13 (2006).
[CrossRef]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-47 (2007).
[CrossRef] [PubMed]

Markos, P.

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Martin, O. J. F.

P. Gay-Balmaz and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929-2936 (2002).
[CrossRef]

Mendonca, S.

J. Gollub, T. Hand, S. Sajuyigbe, S. Mendonca, S. Cummer, and D. R. Smith, "Characterizing the effects of disorder in metamaterial," Appl. Phys. Lett. 91, 162907 (2007).
[CrossRef]

Mitsumata, C.

C. Mitsumata and S. Tomita, "Negative permeability of magnetic nanocomposite films for designing left-handed metamaterials," Appl. Phys. Lett. 91, 223104 (2007).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, and D. J. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Pertsch, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Ran, L.

D. Wang, J. Huangfu, L. Ran, H. Chen, T. M. Grzegorczyk, and J. A. Kong, "Measurement of negative permittivity and permeability from experimental transmission and reflection with effects of cell misalignment," J. Appl. Phys. 99, 123114 (2006).
[CrossRef]

H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, and J. A. Kong, "Metamaterial with randomized patterns for negative refraction of electromagnetic waves," Appl. Phys. Lett. 88, 031908 (2006).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, and D. J. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Sajuyigbe, S.

J. Gollub, T. Hand, S. Sajuyigbe, S. Mendonca, S. Cummer, and D. R. Smith, "Characterizing the effects of disorder in metamaterial," Appl. Phys. Lett. 91, 162907 (2007).
[CrossRef]

Scharf, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-47 (2007).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

J. Gollub, T. Hand, S. Sajuyigbe, S. Mendonca, S. Cummer, and D. R. Smith, "Characterizing the effects of disorder in metamaterial," Appl. Phys. Lett. 91, 162907 (2007).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Smith, D.R.

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Song, J.

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Soukoulis, C. M.

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Tomita, S.

C. Mitsumata and S. Tomita, "Negative permeability of magnetic nanocomposite films for designing left-handed metamaterials," Appl. Phys. Lett. 91, 223104 (2007).
[CrossRef]

Vier, D. C.

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Wang, D.

H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, and J. A. Kong, "Metamaterial with randomized patterns for negative refraction of electromagnetic waves," Appl. Phys. Lett. 88, 031908 (2006).
[CrossRef]

D. Wang, J. Huangfu, L. Ran, H. Chen, T. M. Grzegorczyk, and J. A. Kong, "Measurement of negative permittivity and permeability from experimental transmission and reflection with effects of cell misalignment," J. Appl. Phys. 99, 123114 (2006).
[CrossRef]

Yang, Y.

Yao, Y.

Y. Yao and X. P. Zhao, "Multilevel dendritic structure with simultaneously negative permeability and permittivity," J. Appl. Phys. 101, 124904 (2007).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Zhao, J.

Zhao, Q.

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Zhao, X. P.

Y. Yao and X. P. Zhao, "Multilevel dendritic structure with simultaneously negative permeability and permittivity," J. Appl. Phys. 101, 124904 (2007).
[CrossRef]

X. Zhou and X. P. Zhao, "Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability," Appl. Phys. Lett. 91, 181908 (2007).
[CrossRef]

H. Liu and X. P. Zhao, "Metamaterials with dendriticlike structure at infrared frequencies," Appl. Phys. Lett. 90, 191904 (2007).
[CrossRef]

H. Liu and X. P. Zhao, "Magnetic response of dendritic structures at infrared frequencies," Solid State Commun. 140, 9-13 (2006).
[CrossRef]

X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, and X. P. Zhao, "Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials," Opt. Express 14, 7188-7197 (2006).
[CrossRef] [PubMed]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Zhou, X.

X. Zhou and X. P. Zhao, "Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability," Appl. Phys. Lett. 91, 181908 (2007).
[CrossRef]

X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, and X. P. Zhao, "Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials," Opt. Express 14, 7188-7197 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

H. Liu and X. P. Zhao, "Metamaterials with dendriticlike structure at infrared frequencies," Appl. Phys. Lett. 90, 191904 (2007).
[CrossRef]

X. Zhou and X. P. Zhao, "Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability," Appl. Phys. Lett. 91, 181908 (2007).
[CrossRef]

J. Gollub, T. Hand, S. Sajuyigbe, S. Mendonca, S. Cummer, and D. R. Smith, "Characterizing the effects of disorder in metamaterial," Appl. Phys. Lett. 91, 162907 (2007).
[CrossRef]

C. Mitsumata and S. Tomita, "Negative permeability of magnetic nanocomposite films for designing left-handed metamaterials," Appl. Phys. Lett. 91, 223104 (2007).
[CrossRef]

H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, and J. A. Kong, "Metamaterial with randomized patterns for negative refraction of electromagnetic waves," Appl. Phys. Lett. 88, 031908 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, and D. J. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Appl. Phys. (3)

D. Wang, J. Huangfu, L. Ran, H. Chen, T. M. Grzegorczyk, and J. A. Kong, "Measurement of negative permittivity and permeability from experimental transmission and reflection with effects of cell misalignment," J. Appl. Phys. 99, 123114 (2006).
[CrossRef]

Y. Yao and X. P. Zhao, "Multilevel dendritic structure with simultaneously negative permeability and permittivity," J. Appl. Phys. 101, 124904 (2007).
[CrossRef]

P. Gay-Balmaz and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929-2936 (2002).
[CrossRef]

Nat. Mater. (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-47 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Lett. A (1)

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005).
[CrossRef]

Phys. Rev. B (1)

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum," Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D.R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Solid State Commun. (1)

H. Liu and X. P. Zhao, "Magnetic response of dendritic structures at infrared frequencies," Solid State Commun. 140, 9-13 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Scanning electron microscope images of a sliver dendritic structure with 1µm scale. (b) Photograph of dendritic structures etched on PCB slab, the inset is the dimension of the geometry.

Fig. 2.
Fig. 2.

Schematic illustrations of (a) periodic array with deviation 0<δ<l/2, (b) 12-fold quasiperiodic array and (c) random array with 0<Δ<2l; (d), (e) and (f) Transmission spectrums of each type of disorder samples, respectively.

Fig. 3.
Fig. 3.

Retrieved effective refractive index with ordered and disordered sample.

Fig. 4.
Fig. 4.

(a). (Left scale) Intensity profiles of field power near the LHM lens as a function of frequency. (Right scale, white line) Transmission spectrum of the LHMs lens. (b). Illustrations of the setup of “N” focusing experiment. (c). Field pattern observed at 9.3GHz in an X-Y plane 1mm above the LHMs lens surface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε eff ( ω ) [ 1 F ( Δ ) ω pe 2 ω 2 ω 0 e 2 + i Γ e ω ] f ( Δ ) d Δ
μ eff ( ω ) [ 1 F ( Δ ) ω pm 2 ω 2 ω 0 m 2 + i Γ m ω ] f ( Δ ) d Δ
n eff 1 k Δ 𝕊 · f ( Δ ) d Δ

Metrics