Abstract

We demonstrate an enhanced multiwavelength L-band Brillouin-erbium fiber laser (BEFL), in which the Brillouin pump is pre-amplified before entering the single-mode fiber. The Brillouin pump pre-amplification provided by the Erbium-doped fiber has created higher intensity of Brillouin Stokes line generated in the single-mode fiber that leads to the homogenous gain saturation. Thus the built-up of self-lasing cavity modes is suppressed in a wider wavelength range. In contrary to the conventional linear-cavity BEFL, the number of output channels is enhanced within the same tuning range.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Cowle and D. Y. Stepanov, "Hybrid Brillouin/erbium fiber laser," Opt. Lett. 21, 1250-1252 (1996).
    [CrossRef]
  2. G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
    [CrossRef]
  3. S. Yamashita and G. J. Cowle, "Bidirectional 10 GHz optical comb generation with an intracavity fiber DFB pumped brillouin/erbium fiber laser," IEEE Photon. Technol. Lett. 10, 796-798 (1998).
    [CrossRef]
  4. D. S. Lim, H. K. Lee, K. H. Kim, S. B. Kang, J. T. Ahn, and M. Y. Jeon, "Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror," Opt. Lett. 23, 1671-1673 (1998).
    [CrossRef]
  5. L. Zhan, J. H. Ji, J. Xia, S. Y. Luo, and Y. X. Xia, "160-line multiwavelength generation of linear-cavity self-seeded Brillouin-Erbium fiber laser," Opt. Express 14, 10233-10238 (2006).
    [CrossRef] [PubMed]
  6. M. A. Mahdi, M. H. Al-Mansoori, and M. Premaratne, "Enhancement of multiwavelength generation in the L-band by using a novel Brillouin-Erbium fiber laser with a passive EDF booster section," Opt. Express 15, 11570-11575 (2007).
    [CrossRef] [PubMed]
  7. E. Desurvire, Erbium-doped fiber amplifiers: Principles and applications (John Wiley & Sons Inc., New York, 1994).
  8. D. Y. Stepanov and G. J. Cowle, "Properties of Brillouin/Erbium fiber lasers," IEEE J. Sel. Top. Quantum Electron. 3, 1049-1057 (1997).
    [CrossRef]
  9. Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
    [CrossRef]
  10. Z. Zhang, L. Zhan, and Y. X. Xia, "Tunable self-seeded multiwavelength Brillouin-Erbium fiber laser with enhanced power efficiency," Opt. Express 15, 9731-9736 (2007).
    [CrossRef] [PubMed]
  11. M. H. Al-Mansoori, M. K. Abd-Rahman, F. R. M. Adikan, and M. A. Mahdi, "Widely tunable linear cavity multiwavelength Brillouin-Erbium fiber lasers," Opt. Express 13, 3471-3476 (2005).
    [CrossRef] [PubMed]
  12. D. Y. Stepanov and G. J. Cowle, "Modelling of multiline Brillouin/erbium fiber lasers," Opt. Quantum Electron. 31, 481-494 (1999).
    [CrossRef]
  13. E. Desurvire, J. L. Zyskind, and J. R. Simpson, "Spectral gain hole-burning at 1.53 mm in Erbium doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
    [CrossRef]

2007 (2)

2006 (1)

2005 (1)

2004 (1)

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

1999 (1)

D. Y. Stepanov and G. J. Cowle, "Modelling of multiline Brillouin/erbium fiber lasers," Opt. Quantum Electron. 31, 481-494 (1999).
[CrossRef]

1998 (2)

S. Yamashita and G. J. Cowle, "Bidirectional 10 GHz optical comb generation with an intracavity fiber DFB pumped brillouin/erbium fiber laser," IEEE Photon. Technol. Lett. 10, 796-798 (1998).
[CrossRef]

D. S. Lim, H. K. Lee, K. H. Kim, S. B. Kang, J. T. Ahn, and M. Y. Jeon, "Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror," Opt. Lett. 23, 1671-1673 (1998).
[CrossRef]

1997 (1)

D. Y. Stepanov and G. J. Cowle, "Properties of Brillouin/Erbium fiber lasers," IEEE J. Sel. Top. Quantum Electron. 3, 1049-1057 (1997).
[CrossRef]

1996 (2)

G. J. Cowle and D. Y. Stepanov, "Hybrid Brillouin/erbium fiber laser," Opt. Lett. 21, 1250-1252 (1996).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

1990 (1)

E. Desurvire, J. L. Zyskind, and J. R. Simpson, "Spectral gain hole-burning at 1.53 mm in Erbium doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

Abd-Rahman, M. K.

Adikan, F. R. M.

Ahn, J. T.

Al-Mansoori, M. H.

Cowle, G. J.

D. Y. Stepanov and G. J. Cowle, "Modelling of multiline Brillouin/erbium fiber lasers," Opt. Quantum Electron. 31, 481-494 (1999).
[CrossRef]

S. Yamashita and G. J. Cowle, "Bidirectional 10 GHz optical comb generation with an intracavity fiber DFB pumped brillouin/erbium fiber laser," IEEE Photon. Technol. Lett. 10, 796-798 (1998).
[CrossRef]

D. Y. Stepanov and G. J. Cowle, "Properties of Brillouin/Erbium fiber lasers," IEEE J. Sel. Top. Quantum Electron. 3, 1049-1057 (1997).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, "Hybrid Brillouin/erbium fiber laser," Opt. Lett. 21, 1250-1252 (1996).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

Desurvire, E.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, "Spectral gain hole-burning at 1.53 mm in Erbium doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

Hu, S.

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

Jeon, M. Y.

Ji, J. H.

Kang, S. B.

Kim, K. H.

Lee, H. K.

Lim, D. S.

Luo, S. Y.

Mahdi, M. A.

Premaratne, M.

Simpson, J. R.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, "Spectral gain hole-burning at 1.53 mm in Erbium doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

Song, Y. J.

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

Stepanov, D. Y.

D. Y. Stepanov and G. J. Cowle, "Modelling of multiline Brillouin/erbium fiber lasers," Opt. Quantum Electron. 31, 481-494 (1999).
[CrossRef]

D. Y. Stepanov and G. J. Cowle, "Properties of Brillouin/Erbium fiber lasers," IEEE J. Sel. Top. Quantum Electron. 3, 1049-1057 (1997).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, "Hybrid Brillouin/erbium fiber laser," Opt. Lett. 21, 1250-1252 (1996).
[CrossRef]

Xia, J.

Xia, Y. X.

Yamashita, S.

S. Yamashita and G. J. Cowle, "Bidirectional 10 GHz optical comb generation with an intracavity fiber DFB pumped brillouin/erbium fiber laser," IEEE Photon. Technol. Lett. 10, 796-798 (1998).
[CrossRef]

Ye, Q. H.

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

Zhan, L.

Zhang, Z.

Zyskind, J. L.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, "Spectral gain hole-burning at 1.53 mm in Erbium doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Y. Stepanov and G. J. Cowle, "Properties of Brillouin/Erbium fiber lasers," IEEE J. Sel. Top. Quantum Electron. 3, 1049-1057 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, "Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter," IEEE Photon. Technol. Lett. 16, 2015-2017 (2004).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/Erbium fibre lasers," IEEE Photon. Technol. Lett. 8, 1465-1467 (1996).
[CrossRef]

S. Yamashita and G. J. Cowle, "Bidirectional 10 GHz optical comb generation with an intracavity fiber DFB pumped brillouin/erbium fiber laser," IEEE Photon. Technol. Lett. 10, 796-798 (1998).
[CrossRef]

E. Desurvire, J. L. Zyskind, and J. R. Simpson, "Spectral gain hole-burning at 1.53 mm in Erbium doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 246-248 (1990).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

D. Y. Stepanov and G. J. Cowle, "Modelling of multiline Brillouin/erbium fiber lasers," Opt. Quantum Electron. 31, 481-494 (1999).
[CrossRef]

Other (1)

E. Desurvire, Erbium-doped fiber amplifiers: Principles and applications (John Wiley & Sons Inc., New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Configuration of BEFL with pre-amplification technique in a linear cavity, the dashed box indicates the EDF gain block.

Fig. 2.
Fig. 2.

Output spectrum of the BEFL utilizing (a) BP direct-injection technique and (b) BP pre-amplification technique for the pump power of 90 mW and BP power of 1.1 mW. BP wavelength is set at 1602 nm (blue curve) and 1608 nm (red curve).

Fig. 3.
Fig. 3.

Number of output channels with variation in BP wavelength for the tuning range of 10 nm at different pump powers, the BP power is 3.5 mW.

Fig. 4.
Fig. 4.

Output spectrum of the BEFL utilizing (a) BP direct-injection technique and (b) BP pre-amplification technique for BP wavelengths at 1600 nm and 1610 nm. BP wavelength is set at 1600 nm (blue curve) and 1610 nm (red curve).

Fig. 5.
Fig. 5.

Number of output channels with variation in BP wavelength for the tuning range of 8 nm at different BP powers, the 1480 nm pump power is 90 mW.

Fig. 6.
Fig. 6.

Output spectra of Brillouin Stokes lines for the BP pre-amplification technique (a) the whole tunable spectrum of output channels at different BP wavelengths and (b) the magnified view of the output spectrum at 1603 nm BP wavelength.

Metrics