Abstract

We report on the electrically controlled optical phase modulator behavior of light sculptured periodic structures made of polymer slices alternated to films of well aligned Liquid Crystals (POLICRYPS). Arbitrarily polarized light normally incident on the structure experiences a birefringence that depends on the anisotropy of the composite liquid crystalline material and on the geometrical cell parameters. The sample behaves as a retardation plate in good agreement with the Jones matrices formalism. Birefringence tuning is obtained by applying a suitable voltage, while a negligible birefringence variation is detected by increasing the incidence power. This makes POLICRYPS structures suitable as switchable phase retarders for high power laser beams.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley and Sons, 2006).
    [CrossRef]
  2. J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krau�?, and V. Kramer "Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry," Phys. Rev B 57, 7037 (1998).
    [CrossRef]
  3. G. D. Sharp and K. M. Johnson, "Liquid crystal achromatic compound retarder," U.S. patent 5,658,490 (August 19, 1997).
  4. J. R. Kelly, H. J. Yuan, and Q. Li, "An achromatic liquid crystal electro-optic modulator," U.S. patent Appl. COAD-003/01US, 10/035,804 (filed December 28, 2001).
  5. M. D. Lavrentovich, T. A. Sergan, and J. R. Kelly, "Switchable broadband achromatic half-wave plate with nematic liquid crystals," Opt. Lett. 29, 1411-1413 (2004).
    [CrossRef] [PubMed]
  6. P. G. D. Gennes and J. Prost, The Physucs of Liquid Crystals 2nd Ed. (Oxford University Press, United Kingdom, 1995).
    [PubMed]
  7. S. T. Wu and C. W. Wu, Mol. Cryst. Liq. Cryst. Lett. 7, 7 (1990).
  8. Y. -H. Wu, Y. -H. Lin, Y. -Q. Lu, H. Ren, Y. -H. Fan, J. Wu, and S. -T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Exp. 12, 6382-6389 (2004).
    [CrossRef]
  9. R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, "Development of a new kind of holographic grating made of liquid crystal films separated by slices of polymeric material," Opt. Lett. 29, 1261-1263 (2004).
    [CrossRef] [PubMed]
  10. L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, "In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure," Appl. Opt. 45, 3721-3727 (2006).
    [CrossRef] [PubMed]
  11. R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, "Formation of a Grating of Submicron Nematic Layers by Photopolymerization of Nematic-Containing Mixtures," J. Exp. Theor. Phys. 91, 1190 (2000).
    [CrossRef]
  12. E. G. Loewen and E. Popov, Diffraction Gratings and Applications, 1st ed. (CRC; May 8, 1997).
  13. Grating solver development company. www.gsolver.com
  14. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811 (1981).
    [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  16. F. Simoni, Nonlinear Optical Properties of Liquid Crystals (World Scientific, Singapore, 1997).

2006

2004

2000

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, "Formation of a Grating of Submicron Nematic Layers by Photopolymerization of Nematic-Containing Mixtures," J. Exp. Theor. Phys. 91, 1190 (2000).
[CrossRef]

1998

J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krau�?, and V. Kramer "Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry," Phys. Rev B 57, 7037 (1998).
[CrossRef]

1990

S. T. Wu and C. W. Wu, Mol. Cryst. Liq. Cryst. Lett. 7, 7 (1990).

1981

Caputo, R.

De Luca, A.

De Sio, L.

Eifler, A.

J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krau�?, and V. Kramer "Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry," Phys. Rev B 57, 7037 (1998).
[CrossRef]

Fan, Y. -H.

Y. -H. Wu, Y. -H. Lin, Y. -Q. Lu, H. Ren, Y. -H. Fan, J. Wu, and S. -T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Exp. 12, 6382-6389 (2004).
[CrossRef]

Gaylord, T. K.

Hecht, J.-D.

J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krau�?, and V. Kramer "Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry," Phys. Rev B 57, 7037 (1998).
[CrossRef]

Kelly, J. R.

Kramer, V.

J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krau�?, and V. Kramer "Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry," Phys. Rev B 57, 7037 (1998).
[CrossRef]

Krau??, G.

J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krau�?, and V. Kramer "Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry," Phys. Rev B 57, 7037 (1998).
[CrossRef]

Lavrentovich, M. D.

Lin, Y. -H.

Y. -H. Wu, Y. -H. Lin, Y. -Q. Lu, H. Ren, Y. -H. Fan, J. Wu, and S. -T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Exp. 12, 6382-6389 (2004).
[CrossRef]

Lu, Y. -Q.

Y. -H. Wu, Y. -H. Lin, Y. -Q. Lu, H. Ren, Y. -H. Fan, J. Wu, and S. -T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Exp. 12, 6382-6389 (2004).
[CrossRef]

Moharam, M. G.

Ren, H.

Y. -H. Wu, Y. -H. Lin, Y. -Q. Lu, H. Ren, Y. -H. Fan, J. Wu, and S. -T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Exp. 12, 6382-6389 (2004).
[CrossRef]

Riede, V.

J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krau�?, and V. Kramer "Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry," Phys. Rev B 57, 7037 (1998).
[CrossRef]

Schubert, M.

J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krau�?, and V. Kramer "Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry," Phys. Rev B 57, 7037 (1998).
[CrossRef]

Sergan, T. A.

Sukhov, A. V.

Umeton, C.

Ushakov, R. F.

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, "Formation of a Grating of Submicron Nematic Layers by Photopolymerization of Nematic-Containing Mixtures," J. Exp. Theor. Phys. 91, 1190 (2000).
[CrossRef]

Veltri, A.

Wu, C. W.

S. T. Wu and C. W. Wu, Mol. Cryst. Liq. Cryst. Lett. 7, 7 (1990).

Wu, J.

Y. -H. Wu, Y. -H. Lin, Y. -Q. Lu, H. Ren, Y. -H. Fan, J. Wu, and S. -T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Exp. 12, 6382-6389 (2004).
[CrossRef]

Wu, S. T.

S. T. Wu and C. W. Wu, Mol. Cryst. Liq. Cryst. Lett. 7, 7 (1990).

Wu, S. -T.

Y. -H. Wu, Y. -H. Lin, Y. -Q. Lu, H. Ren, Y. -H. Fan, J. Wu, and S. -T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Exp. 12, 6382-6389 (2004).
[CrossRef]

Wu, Y. -H.

Y. -H. Wu, Y. -H. Lin, Y. -Q. Lu, H. Ren, Y. -H. Fan, J. Wu, and S. -T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Exp. 12, 6382-6389 (2004).
[CrossRef]

Appl. Opt.

J. Exp. Theor. Phys.

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, "Formation of a Grating of Submicron Nematic Layers by Photopolymerization of Nematic-Containing Mixtures," J. Exp. Theor. Phys. 91, 1190 (2000).
[CrossRef]

J. Opt. Soc. Am.

Mol. Cryst. Liq. Cryst. Lett.

S. T. Wu and C. W. Wu, Mol. Cryst. Liq. Cryst. Lett. 7, 7 (1990).

Opt. Exp.

Y. -H. Wu, Y. -H. Lin, Y. -Q. Lu, H. Ren, Y. -H. Fan, J. Wu, and S. -T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal," Opt. Exp. 12, 6382-6389 (2004).
[CrossRef]

Opt. Lett.

Phys. Rev B

J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krau�?, and V. Kramer "Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry," Phys. Rev B 57, 7037 (1998).
[CrossRef]

Other

G. D. Sharp and K. M. Johnson, "Liquid crystal achromatic compound retarder," U.S. patent 5,658,490 (August 19, 1997).

J. R. Kelly, H. J. Yuan, and Q. Li, "An achromatic liquid crystal electro-optic modulator," U.S. patent Appl. COAD-003/01US, 10/035,804 (filed December 28, 2001).

P. G. D. Gennes and J. Prost, The Physucs of Liquid Crystals 2nd Ed. (Oxford University Press, United Kingdom, 1995).
[PubMed]

E. G. Loewen and E. Popov, Diffraction Gratings and Applications, 1st ed. (CRC; May 8, 1997).

Grating solver development company. www.gsolver.com

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).

F. Simoni, Nonlinear Optical Properties of Liquid Crystals (World Scientific, Singapore, 1997).

T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley and Sons, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

View of the sample on the rotation stage (a) and optical microscope image of a POLICRYPS structure (b).

Fig. 2.
Fig. 2.

Experimental setup for the measurement of the POLICRYPS birefringence. P polarizer, A analyzer, Iinc totally incidence intensity, Iout output intensity, I0T and I±1T zeroth and the first order transmitted intensities, respectively, α angle between the light polarization direction (y axis) and the grating axis (direction of the POLICRYPS channels) in the yz plane, PD. Photo-detector, OSC oscilloscope.

Fig. 3.
Fig. 3.

Experimental data points and theoretical (solid line) behavior of the output intensity versus the rotation angle obtained by placing the sample between crossed (red) and parallel (blue) polarizers. The difference between the level of I0T and the maximum value reached by Iparall is due to the absorption of the second polarizer. The experimental error is +/- 0.08 mV, estimated as the maximum semi-dispersion of a measure set.

Fig. 4.
Fig. 4.

Birefringence versus the applied electric field (square voltage pulses at 1 Khz).

Fig. 5.
Fig. 5.

Birefringence versus the power of the impinging laser beam (the spot diameter is 1 mm).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( α ) = I 0 T sin 2 ( φ 2 ) sin 2 ( 2 α )
I ( α ) // . = I 0 T ( 1 sin 2 ( φ 2 ) sin 2 ( 2 α ) )
I ( α ) = A sin 2 ( 2 X + B )
I ( α ) // . = C ( 1 D sin 2 ( 2 X + E ) )
Δ n = λ φ 2 π L

Metrics