Abstract

Synthetic yet realistic images are valuable for many applications in visual sciences and medical imaging. Typically, investigators develop algorithms and adjust their parameters to generate images that are visually similar to real images. In this study, we used a genetic algorithm and an objective, statistical similarity measure to optimize a particular texture generation algorithm, the clustered lumpy backgrounds (CLB) technique, and synthesize images mimicking real mammograms textures. We combined this approach with psychophysical experiments involving the judgment of radiologists, who were asked to qualify the visual realism of the images. Both objective and psychophysical approaches show that the optimized versions are significantly more realistic than the previous CLB model. Anatomical structures are well reproduced, and arbitrary large databases of mammographic texture with visual and statistical realism can be generated. Potential applications include detection experiments, where large amounts of statistically traceable yet realistic images are needed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Judy, R. G. Swensson, R. D. Nawfel, and K. H. Chan, "Contrast detail curves for liver CT," Med. Phys. 19, 1167-1174 (1992).
    [CrossRef]
  2. S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994).
    [CrossRef] [PubMed]
  3. M. P. Eckstein and J. S. Whiting, "Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast," J. Opt. Soc. Am. A 13, 1777-1787 (1996).
    [CrossRef]
  4. Y. Zhang, B. T. Pham, and M. P. Eckstein, "Evaluation of JPEG 2000 Encoder Options: Human and Model Observer Detection of Variable Signals in X-Ray Coronary Angiograms," IEEE Trans. Med. Imaging 23, 613-632 (2004).
    [CrossRef] [PubMed]
  5. E. A. Krupinsky and H. Roehring, "Pulmonary nodule detection and visual search: P45 and P104 monochrome versus color monitor displays," Acad. Radiol. 9, 638-645 (2002).
  6. F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999).
    [CrossRef] [PubMed]
  7. D. S. Brettle, E. Berry, and M. A. Smith, "The effect of experience on detectability in local area anatomical noise," BJR 80, 186-193 (2007).
    [CrossRef]
  8. R. F. Wagner and D. G. Brown, "Unified SNR analysis of medical imaging systems," Phys. Med. Biol. 30, 489-518 (1985).
    [CrossRef]
  9. M. P. Eckstein, C. K. Abbey, and F. O. Bochud, "Practical guide to model observers in real and synthetic noisy backgrounds," in Handbook of Medical Imaging, Physics & Psychophysics, K. Beutel, H. Kundel, and K. Vanmetter, eds (SPIE Press, Bellingham, Washington, 2000).
  10. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, Hoboken, NJ, 2004).
  11. L. Chen and H. H. Barrett, "Task-based lens design with application to digital mammography," J. Opt. Soc. Am. A 22, 148-167 (2005).
    [CrossRef]
  12. M. A. Kupinski, E. Clarkson, J. H. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A 20, 421-429 (2003).
    [CrossRef]
  13. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, and G. W. Seeley, "Effect of noise correlation on detectability of disk signals in medical imaging," J. Opt. Soc. Am. A 2, 1752-1759 (1985).
    [CrossRef] [PubMed]
  14. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds," J. Opt. Soc. Am. A 17, 193-205 (2000).
    [CrossRef]
  15. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Search for lesions in mammograms: Non-Gaussian observer response," Med. Phys. 31, 24-36 (2004).
    [CrossRef] [PubMed]
  16. C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007).
  17. B. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, "A three-dimensional breast software phantom for mammography simulation," Phys. Med. Biol. 48, 3699-3719 (2003).
    [CrossRef] [PubMed]
  18. P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-9 (2002).
    [CrossRef] [PubMed]
  19. P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture," Med. Phys. 29, 2140-51 (2002).
    [CrossRef] [PubMed]
  20. J. P. Rolland and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992).
    [CrossRef] [PubMed]
  21. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Statistical texture synthesis of mammographic images with clustered lumpy backgrounds," Opt. Express 4, 33-43 (1999).
    [CrossRef] [PubMed]
  22. D. Whitley, "A Genetic Algorithm Tutorial," Stat. Comput. 4, 65-85 (1994).
    [CrossRef]
  23. A. E. Eiden, R. Hinterding, and Z. Michalewicz, "Parameter Control in Evolutionary Algorithms," IEEE Trans. Evol. Comput. 3, 124-141 1999.
    [CrossRef]
  24. M. Sonka, V. Hlavak, and R. Boyle, Image processing, Analysis and Machine Vision (Brooks/Cole, Pacific Grove, Ca, 1999).
  25. M. Tuceryan and A. K. Jain, "Texture Analysis," in The Handbook of Pattern Recognition and Computer Vision, C. H. Chen, L. F. Pau, and P. Wang, eds., (World Scientific Publishing Co, River Edge, NJ, 1998).
  26. R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Trans. Syst. Man. Cybern. 3, 610-62 (1973).
    [CrossRef]
  27. M. Amadasun and R. King, "Textural features corresponding to textural properties," IEEE Trans. Syst. Man, Cybern. 19, 1264-1274 (1989).
    [CrossRef]
  28. C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
    [CrossRef] [PubMed]
  29. C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007).
    [CrossRef] [PubMed]
  30. Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000).
    [CrossRef] [PubMed]
  31. S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
    [CrossRef] [PubMed]
  32. S. Muller, "Full-field digital mammography designed as a complete system," Eur. J. Radiol. 31, 25-34 (1999).
    [CrossRef] [PubMed]
  33. T. Bäck and M. Schütz. "Intelligent mutation rate control in canonical genetic algorithms," in Proceedings of the 9th International Symposium on Foundations of Intelligent Systems, number 1079 in Lectures notes in Artificial Intelligence, Z. Ras and M. Michalewicz, eds., (Springer, London, UK, 1996), pp. 158-167.
  34. American College of Radiology, Breast Imaging Reporting and Data System Atlas (American College of Radiology, Reston, Va, 2003).
  35. A. Burgess and P. Judy, "Signal detection in power-law noise: effect of spectrum exponent," J. Opt. Soc. Am. A 24, B52-B60 (2007).
    [CrossRef]
  36. J. R. Taylor, An Introduction to Error Analysis (University Science Books, Mill Valley, Ca, 1982).

2007 (4)

D. S. Brettle, E. Berry, and M. A. Smith, "The effect of experience on detectability in local area anatomical noise," BJR 80, 186-193 (2007).
[CrossRef]

C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007).

C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007).
[CrossRef] [PubMed]

A. Burgess and P. Judy, "Signal detection in power-law noise: effect of spectrum exponent," J. Opt. Soc. Am. A 24, B52-B60 (2007).
[CrossRef]

2005 (1)

2004 (2)

Y. Zhang, B. T. Pham, and M. P. Eckstein, "Evaluation of JPEG 2000 Encoder Options: Human and Model Observer Detection of Variable Signals in X-Ray Coronary Angiograms," IEEE Trans. Med. Imaging 23, 613-632 (2004).
[CrossRef] [PubMed]

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Search for lesions in mammograms: Non-Gaussian observer response," Med. Phys. 31, 24-36 (2004).
[CrossRef] [PubMed]

2003 (2)

M. A. Kupinski, E. Clarkson, J. H. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A 20, 421-429 (2003).
[CrossRef]

B. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, "A three-dimensional breast software phantom for mammography simulation," Phys. Med. Biol. 48, 3699-3719 (2003).
[CrossRef] [PubMed]

2002 (3)

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-9 (2002).
[CrossRef] [PubMed]

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture," Med. Phys. 29, 2140-51 (2002).
[CrossRef] [PubMed]

E. A. Krupinsky and H. Roehring, "Pulmonary nodule detection and visual search: P45 and P104 monochrome versus color monitor displays," Acad. Radiol. 9, 638-645 (2002).

2000 (3)

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds," J. Opt. Soc. Am. A 17, 193-205 (2000).
[CrossRef]

Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000).
[CrossRef] [PubMed]

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

1999 (4)

S. Muller, "Full-field digital mammography designed as a complete system," Eur. J. Radiol. 31, 25-34 (1999).
[CrossRef] [PubMed]

A. E. Eiden, R. Hinterding, and Z. Michalewicz, "Parameter Control in Evolutionary Algorithms," IEEE Trans. Evol. Comput. 3, 124-141 1999.
[CrossRef]

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Statistical texture synthesis of mammographic images with clustered lumpy backgrounds," Opt. Express 4, 33-43 (1999).
[CrossRef] [PubMed]

F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999).
[CrossRef] [PubMed]

1996 (1)

1994 (2)

D. Whitley, "A Genetic Algorithm Tutorial," Stat. Comput. 4, 65-85 (1994).
[CrossRef]

S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994).
[CrossRef] [PubMed]

1992 (2)

P. F. Judy, R. G. Swensson, R. D. Nawfel, and K. H. Chan, "Contrast detail curves for liver CT," Med. Phys. 19, 1167-1174 (1992).
[CrossRef]

J. P. Rolland and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992).
[CrossRef] [PubMed]

1990 (1)

C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
[CrossRef] [PubMed]

1989 (1)

M. Amadasun and R. King, "Textural features corresponding to textural properties," IEEE Trans. Syst. Man, Cybern. 19, 1264-1274 (1989).
[CrossRef]

1985 (2)

1973 (1)

R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Trans. Syst. Man. Cybern. 3, 610-62 (1973).
[CrossRef]

Abbey, C. K.

Albagli, D.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Albert, M.

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-9 (2002).
[CrossRef] [PubMed]

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture," Med. Phys. 29, 2140-51 (2002).
[CrossRef] [PubMed]

Amadasun, M.

M. Amadasun and R. King, "Textural features corresponding to textural properties," IEEE Trans. Syst. Man, Cybern. 19, 1264-1274 (1989).
[CrossRef]

Bakic, P. R.

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-9 (2002).
[CrossRef] [PubMed]

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture," Med. Phys. 29, 2140-51 (2002).
[CrossRef] [PubMed]

Barrett, H. H.

Berry, E.

D. S. Brettle, E. Berry, and M. A. Smith, "The effect of experience on detectability in local area anatomical noise," BJR 80, 186-193 (2007).
[CrossRef]

Bliznakov, Z.

B. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, "A three-dimensional breast software phantom for mammography simulation," Phys. Med. Biol. 48, 3699-3719 (2003).
[CrossRef] [PubMed]

Bliznakova, B.

B. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, "A three-dimensional breast software phantom for mammography simulation," Phys. Med. Biol. 48, 3699-3719 (2003).
[CrossRef] [PubMed]

Bochud, F. O.

C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007).
[CrossRef] [PubMed]

C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007).

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Search for lesions in mammograms: Non-Gaussian observer response," Med. Phys. 31, 24-36 (2004).
[CrossRef] [PubMed]

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds," J. Opt. Soc. Am. A 17, 193-205 (2000).
[CrossRef]

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Statistical texture synthesis of mammographic images with clustered lumpy backgrounds," Opt. Express 4, 33-43 (1999).
[CrossRef] [PubMed]

F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999).
[CrossRef] [PubMed]

Borgstrom, M. C.

Bravou, V.

B. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, "A three-dimensional breast software phantom for mammography simulation," Phys. Med. Biol. 48, 3699-3719 (2003).
[CrossRef] [PubMed]

Brettle, D. S.

D. S. Brettle, E. Berry, and M. A. Smith, "The effect of experience on detectability in local area anatomical noise," BJR 80, 186-193 (2007).
[CrossRef]

Brown, D. G.

R. F. Wagner and D. G. Brown, "Unified SNR analysis of medical imaging systems," Phys. Med. Biol. 30, 489-518 (1985).
[CrossRef]

Brzakovic, D.

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-9 (2002).
[CrossRef] [PubMed]

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture," Med. Phys. 29, 2140-51 (2002).
[CrossRef] [PubMed]

Burgess, A.

Caldwell, C. B.

C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
[CrossRef] [PubMed]

Castella, C.

C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007).
[CrossRef] [PubMed]

C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007).

Chan, K. H.

S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994).
[CrossRef] [PubMed]

P. F. Judy, R. G. Swensson, R. D. Nawfel, and K. H. Chan, "Contrast detail curves for liver CT," Med. Phys. 19, 1167-1174 (1992).
[CrossRef]

Chen, L.

Clarkson, E.

Cooke, G.

C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
[CrossRef] [PubMed]

Cumming, S.

Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000).
[CrossRef] [PubMed]

D??Orsi, C. J.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Dinstein, I.

R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Trans. Syst. Man. Cybern. 3, 610-62 (1973).
[CrossRef]

Eckstein, M. P.

C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007).
[CrossRef] [PubMed]

C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007).

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Search for lesions in mammograms: Non-Gaussian observer response," Med. Phys. 31, 24-36 (2004).
[CrossRef] [PubMed]

Y. Zhang, B. T. Pham, and M. P. Eckstein, "Evaluation of JPEG 2000 Encoder Options: Human and Model Observer Detection of Variable Signals in X-Ray Coronary Angiograms," IEEE Trans. Med. Imaging 23, 613-632 (2004).
[CrossRef] [PubMed]

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds," J. Opt. Soc. Am. A 17, 193-205 (2000).
[CrossRef]

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Statistical texture synthesis of mammographic images with clustered lumpy backgrounds," Opt. Express 4, 33-43 (1999).
[CrossRef] [PubMed]

M. P. Eckstein and J. S. Whiting, "Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast," J. Opt. Soc. Am. A 13, 1777-1787 (1996).
[CrossRef]

Eiden, A. E.

A. E. Eiden, R. Hinterding, and Z. Michalewicz, "Parameter Control in Evolutionary Algorithms," IEEE Trans. Evol. Comput. 3, 124-141 1999.
[CrossRef]

Giger, M. L.

Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000).
[CrossRef] [PubMed]

Granfors, P. R.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Han, S.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Haralick, R. M.

R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Trans. Syst. Man. Cybern. 3, 610-62 (1973).
[CrossRef]

Hendrick, R. E.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Hessler, C.

F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999).
[CrossRef] [PubMed]

Hinterding, R.

A. E. Eiden, R. Hinterding, and Z. Michalewicz, "Parameter Control in Evolutionary Algorithms," IEEE Trans. Evol. Comput. 3, 124-141 1999.
[CrossRef]

Holdsworth, D. W.

C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
[CrossRef] [PubMed]

Hoppin, J. H.

Huo, Z.

Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000).
[CrossRef] [PubMed]

Jong, R. A.

C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
[CrossRef] [PubMed]

Judy, P.

Judy, P. F.

S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994).
[CrossRef] [PubMed]

P. F. Judy, R. G. Swensson, R. D. Nawfel, and K. H. Chan, "Contrast detail curves for liver CT," Med. Phys. 19, 1167-1174 (1992).
[CrossRef]

Karellas, A.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

King, R.

M. Amadasun and R. King, "Textural features corresponding to textural properties," IEEE Trans. Syst. Man, Cybern. 19, 1264-1274 (1989).
[CrossRef]

Kinkel, K.

C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007).
[CrossRef] [PubMed]

C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007).

Kolitsi, Z.

B. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, "A three-dimensional breast software phantom for mammography simulation," Phys. Med. Biol. 48, 3699-3719 (2003).
[CrossRef] [PubMed]

Krupinsky, E. A.

E. A. Krupinsky and H. Roehring, "Pulmonary nodule detection and visual search: P45 and P104 monochrome versus color monitor displays," Acad. Radiol. 9, 638-645 (2002).

Kupinski, M. A.

Landberg, C. E.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Levis, I.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Maidment, A. D.

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-9 (2002).
[CrossRef] [PubMed]

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture," Med. Phys. 29, 2140-51 (2002).
[CrossRef] [PubMed]

Michalewicz, Z.

A. E. Eiden, R. Hinterding, and Z. Michalewicz, "Parameter Control in Evolutionary Algorithms," IEEE Trans. Evol. Comput. 3, 124-141 1999.
[CrossRef]

Muller, S.

S. Muller, "Full-field digital mammography designed as a complete system," Eur. J. Radiol. 31, 25-34 (1999).
[CrossRef] [PubMed]

Myers, K. J.

Nawfel, R. D.

S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994).
[CrossRef] [PubMed]

P. F. Judy, R. G. Swensson, R. D. Nawfel, and K. H. Chan, "Contrast detail curves for liver CT," Med. Phys. 19, 1167-1174 (1992).
[CrossRef]

Olopade, O. I.

Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000).
[CrossRef] [PubMed]

Opsahl-Ong, B.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Pallikarakis, N.

B. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, "A three-dimensional breast software phantom for mammography simulation," Phys. Med. Biol. 48, 3699-3719 (2003).
[CrossRef] [PubMed]

Patton, D. D.

Pham, B. T.

Y. Zhang, B. T. Pham, and M. P. Eckstein, "Evaluation of JPEG 2000 Encoder Options: Human and Model Observer Detection of Variable Signals in X-Ray Coronary Angiograms," IEEE Trans. Med. Imaging 23, 613-632 (2004).
[CrossRef] [PubMed]

Roehring, H.

E. A. Krupinsky and H. Roehring, "Pulmonary nodule detection and visual search: P45 and P104 monochrome versus color monitor displays," Acad. Radiol. 9, 638-645 (2002).

Rolland, J. P.

Schnyder, P.

F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999).
[CrossRef] [PubMed]

Seeley, G. W.

Seltzer, S. E.

S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994).
[CrossRef] [PubMed]

Shanmugam, K.

R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Trans. Syst. Man. Cybern. 3, 610-62 (1973).
[CrossRef]

Smith, M. A.

D. S. Brettle, E. Berry, and M. A. Smith, "The effect of experience on detectability in local area anatomical noise," BJR 80, 186-193 (2007).
[CrossRef]

Sottas, P.-E.

C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007).
[CrossRef] [PubMed]

Stappelton, S. J.

C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
[CrossRef] [PubMed]

Suryanarayanan, S.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Swensson, R. G.

S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994).
[CrossRef] [PubMed]

P. F. Judy, R. G. Swensson, R. D. Nawfel, and K. H. Chan, "Contrast detail curves for liver CT," Med. Phys. 19, 1167-1174 (1992).
[CrossRef]

Tkaczyk, E. J.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Valley, J.-F.

F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999).
[CrossRef] [PubMed]

Vedantham, S.

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Verdun, F. R.

C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007).
[CrossRef] [PubMed]

C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007).

F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999).
[CrossRef] [PubMed]

Wagner, R. F.

R. F. Wagner and D. G. Brown, "Unified SNR analysis of medical imaging systems," Phys. Med. Biol. 30, 489-518 (1985).
[CrossRef]

Weiser, W. J.

C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
[CrossRef] [PubMed]

Whiting, J. S.

Whitley, D.

D. Whitley, "A Genetic Algorithm Tutorial," Stat. Comput. 4, 65-85 (1994).
[CrossRef]

Wolverton, D. E.

Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000).
[CrossRef] [PubMed]

Yaffe, M. J.

C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, B. T. Pham, and M. P. Eckstein, "Evaluation of JPEG 2000 Encoder Options: Human and Model Observer Detection of Variable Signals in X-Ray Coronary Angiograms," IEEE Trans. Med. Imaging 23, 613-632 (2004).
[CrossRef] [PubMed]

Zhong, W.

Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000).
[CrossRef] [PubMed]

Acad. Radiol. (2)

E. A. Krupinsky and H. Roehring, "Pulmonary nodule detection and visual search: P45 and P104 monochrome versus color monitor displays," Acad. Radiol. 9, 638-645 (2002).

C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical Features," Acad. Radiol. 14, 1486-1499 (2007).
[CrossRef] [PubMed]

BJR (1)

D. S. Brettle, E. Berry, and M. A. Smith, "The effect of experience on detectability in local area anatomical noise," BJR 80, 186-193 (2007).
[CrossRef]

Eur. J. Radiol. (1)

S. Muller, "Full-field digital mammography designed as a complete system," Eur. J. Radiol. 31, 25-34 (1999).
[CrossRef] [PubMed]

IEEE Trans. Evol. Comput. (1)

A. E. Eiden, R. Hinterding, and Z. Michalewicz, "Parameter Control in Evolutionary Algorithms," IEEE Trans. Evol. Comput. 3, 124-141 1999.
[CrossRef]

IEEE Trans. Med. Imaging (1)

Y. Zhang, B. T. Pham, and M. P. Eckstein, "Evaluation of JPEG 2000 Encoder Options: Human and Model Observer Detection of Variable Signals in X-Ray Coronary Angiograms," IEEE Trans. Med. Imaging 23, 613-632 (2004).
[CrossRef] [PubMed]

IEEE Trans. Syst. Man, Cybern. (1)

M. Amadasun and R. King, "Textural features corresponding to textural properties," IEEE Trans. Syst. Man, Cybern. 19, 1264-1274 (1989).
[CrossRef]

IEEE Trans. Syst. Man. Cybern. (1)

R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Trans. Syst. Man. Cybern. 3, 610-62 (1973).
[CrossRef]

J. Opt. Soc. Am. A (8)

A. Burgess and P. Judy, "Signal detection in power-law noise: effect of spectrum exponent," J. Opt. Soc. Am. A 24, B52-B60 (2007).
[CrossRef]

J. P. Rolland and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992).
[CrossRef] [PubMed]

M. P. Eckstein and J. S. Whiting, "Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast," J. Opt. Soc. Am. A 13, 1777-1787 (1996).
[CrossRef]

C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007).

L. Chen and H. H. Barrett, "Task-based lens design with application to digital mammography," J. Opt. Soc. Am. A 22, 148-167 (2005).
[CrossRef]

M. A. Kupinski, E. Clarkson, J. H. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A 20, 421-429 (2003).
[CrossRef]

K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, and G. W. Seeley, "Effect of noise correlation on detectability of disk signals in medical imaging," J. Opt. Soc. Am. A 2, 1752-1759 (1985).
[CrossRef] [PubMed]

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds," J. Opt. Soc. Am. A 17, 193-205 (2000).
[CrossRef]

Med. Phys. (8)

F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Search for lesions in mammograms: Non-Gaussian observer response," Med. Phys. 31, 24-36 (2004).
[CrossRef] [PubMed]

F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999).
[CrossRef] [PubMed]

P. F. Judy, R. G. Swensson, R. D. Nawfel, and K. H. Chan, "Contrast detail curves for liver CT," Med. Phys. 19, 1167-1174 (1992).
[CrossRef]

S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994).
[CrossRef] [PubMed]

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-9 (2002).
[CrossRef] [PubMed]

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. Maidment, "Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture," Med. Phys. 29, 2140-51 (2002).
[CrossRef] [PubMed]

Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, "Computerized analysis of mammographic parenchymal patterns for breast cancer assessment. Feature selection," Med. Phys. 27, 4-12 (2000).
[CrossRef] [PubMed]

S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D??Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (3)

C. B. Caldwell, S. J. Stappelton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe, "Characterisation of mammographic parenchymal pattern by fractal dimension," Phys. Med. Biol. 35, 235-247 (1990).
[CrossRef] [PubMed]

R. F. Wagner and D. G. Brown, "Unified SNR analysis of medical imaging systems," Phys. Med. Biol. 30, 489-518 (1985).
[CrossRef]

B. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, "A three-dimensional breast software phantom for mammography simulation," Phys. Med. Biol. 48, 3699-3719 (2003).
[CrossRef] [PubMed]

Stat. Comput. (1)

D. Whitley, "A Genetic Algorithm Tutorial," Stat. Comput. 4, 65-85 (1994).
[CrossRef]

Other (7)

M. Sonka, V. Hlavak, and R. Boyle, Image processing, Analysis and Machine Vision (Brooks/Cole, Pacific Grove, Ca, 1999).

M. Tuceryan and A. K. Jain, "Texture Analysis," in The Handbook of Pattern Recognition and Computer Vision, C. H. Chen, L. F. Pau, and P. Wang, eds., (World Scientific Publishing Co, River Edge, NJ, 1998).

T. Bäck and M. Schütz. "Intelligent mutation rate control in canonical genetic algorithms," in Proceedings of the 9th International Symposium on Foundations of Intelligent Systems, number 1079 in Lectures notes in Artificial Intelligence, Z. Ras and M. Michalewicz, eds., (Springer, London, UK, 1996), pp. 158-167.

American College of Radiology, Breast Imaging Reporting and Data System Atlas (American College of Radiology, Reston, Va, 2003).

J. R. Taylor, An Introduction to Error Analysis (University Science Books, Mill Valley, Ca, 1982).

M. P. Eckstein, C. K. Abbey, and F. O. Bochud, "Practical guide to model observers in real and synthetic noisy backgrounds," in Handbook of Medical Imaging, Physics & Psychophysics, K. Beutel, H. Kundel, and K. Vanmetter, eds (SPIE Press, Bellingham, Washington, 2000).

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, Hoboken, NJ, 2004).

Supplementary Material (1)

» Media 1: AVI (1550 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(1.55 MB) Movie showing the construction of a CLB image. This example has two CLB layers with isotropic orientation of the blobs. [Media 1]

Fig. 2.
Fig. 2.

Example of fitness function history. The upper series represents the median value of the fitness function evaluated on the population at generation t, and the lower series indicates the value for the best chromosome.

Fig. 3.
Fig. 3.

Fitness function computed from 200 realizations with the optimized set of CLB parameters for all model variations. The error bars represent the standard deviation of the realizations’ fitness function. The fitness function averaged over 200 real images is shown for comparison.

Fig. 4.
Fig. 4.

Examples of realizations for the different types of CLB variations. (a) ROI selected from a real mammograms; (b) 1-layer CLB, Opex99 [21] parameters (referred in text as Opex99); (c) 2-layer CLB, isotropic orientation of the clusters (doubiso); (d) 2-layer CLB, favored orientation of the clusters (doubori); (e) 1-layer CLB, favored orientation of the clusters (simpori); (f) 1-layer CLB, optimized version of (b) (simpiso).

Fig. 5.
Fig. 5.

Comparison of the real images and optimized CLB Wiener spectra. Pixel size is 0.1 mm. Only one series of synthetic images (doubiso) is shown. Other series have very similar spectra.

Fig. 6.
Fig. 6.

Realism marks given by the observers (radiologists and radiographers) for the glandular areas, fatty areas, and fibers. The boxes represent the 25th, 50th, and 75th percentiles, and the whiskers the limits for the 10th and 90th percentiles.

Tables (4)

Tables Icon

Table 1. Definitions and distributions of the CLB model parameters.

Tables Icon

Table 2. Genetic algorithm parameters used for optimizing CLB variables.

Tables Icon

Table 3. Visual realism evaluation by the five observers for glandular (GL) and fatty (FA) areas, and fibers (FI). Bold values indicate statistically significantly realistic evaluations (one sided Student t-test, α=5%, β=0.8, H0: µ=6.5). Italic values correspond to the mean and standard error.

Tables Icon

Table 4. Optimized CLB parameters for the various CLB models.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g ( r ) = k = 1 K b ( r r k ) ,
g ( r ) = k = 1 K n = 1 N k b ( r r k r kn , R θ k )
b ( r , R θ ) = exp ( α R θ r β L ( R θ r ) ) ,
d = [ ( v μ ) T K 1 ( v μ ) ] 1 2 ,
μ = 1 n i = 1 n v i
K = 1 n 1 i = 1 n ( v i μ ) T ( v i μ ) ,

Metrics