Abstract

Electro optical absorption in hydrogenated amorphous silicon (α-Si:H) - amorphous silicon carbonitride (α-SiCxNy) multilayers have been studied in two different planar multistacks waveguides. The waveguides were realized by plasma enhanced chemical vapour deposition (PECVD), a technology compatible with the standard microelectronic processes. Light absorption is induced at λ=1.55 µm through the application of an electric field which induces free carrier accumulation across the multiple insulator/ semiconductor device structure. The experimental performances have been compared to those obtained through calculations using combined two-dimensional (2-D) optical and electrical simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, “Silicon-based optoelectronics,” in Proc. IEEE 81, 1687–1706 (1993).
    [CrossRef]
  2. G. T. Reed and A. P. Knights, “Silicon Photonics: An Introduction,” Wiley, New York (2004).
  3. G. Cocorullo, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon thermo-optical micromodulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
    [CrossRef]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [CrossRef] [PubMed]
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [CrossRef] [PubMed]
  6. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express 14, 10838–10843 (2006).
    [CrossRef] [PubMed]
  7. G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Optical Modulators a 1.3 µm based on Free Carrier Absorption,” IEEE Electron Device Lett. 12, 276–278 (1991).
    [CrossRef]
  8. A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 µm,” Appl. Phys. Lett. 86, 20115 (2005).
    [CrossRef]
  9. T. Tabei, Tomoki Hirata, K. Kajikawa, and H. Sunami, “Potentiality of Silicon Optical Modulator Based on Free-Carrier Absorption,” IEEE International Electron Devices Meeting, pp. 1023–1026 (2007).
    [CrossRef]
  10. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21, 2002–2004 (1996).
    [CrossRef] [PubMed]
  11. M. Okamura and S. Suzuki, “Infrared photodetection using α-Si:H photodiode,” IEEE Photon. Technol. Lett. 6, 412–414 (1994).
    [CrossRef]
  12. G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Quantum Electron 4, 997–1001 (1998).
    [CrossRef]
  13. B. Han, R. Orobtchouk, T. Benyattou, P.R.A. Binetti, S. Jeannot, J. M. Fedeli, and X.J.M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proc. ECIO 07, Copenhagen, Denmark, pp. 1–4 (2007).
    [PubMed]
  14. F.G. Della Corte, M. Gagliardi, M. A. Nigro, and C. Summonte “In-guide pump and probe characterization of photoinduced absorption in hydrogenated amorphous silicon thin films,” J. Appl. Phys. 100, 033104 (2006).
    [CrossRef]
  15. M. Zelikson, K. Weiser, A. Chack, and J. Kanicki, “Direct determination of the quadratic electro-optic coefficient in an α-Si:H based waveguide,” Jour. Non Cryst. Sol. 198–200, 107–110 (1996).
    [CrossRef]
  16. RSoft Photonics CAD Layout User Guide, Rsoft Design Group, Inc. Physical Layer Division, 200 Executive Blvd. Ossining, NY 10562.
  17. E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44, 7532–7539 (2005).
    [CrossRef] [PubMed]
  18. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333 (1981).
    [CrossRef] [PubMed]
  19. G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. Amaral, and A.R. Ramos, “Properties of α-Si:H TFTs using silicon carbonitride as dielectric”, Jour. Non Cryst. Sol. 338–340, 797–801 (2004).
    [CrossRef]
  20. C. A. Barrios, “Electrooptic Modulation of Multisilicon-on-Insulator Photonic Wires,” Journal of Lightwave Technology 24, 2146–2155 (2006).
    [CrossRef]
  21. T. S. Moss, G. J. Burrell, and B. Ellis, “Semiconductor Opto-Electronics,” London Butterwoth, (1973).
  22. G. Cancellieri and U. Ravaioli, “Measurements of Optical Fibers and Devices: Theory and Experiments”, Dedham MA, Artech House (1984).
  23. R. A Street, “Hydrogenated Amorphous Silicon,” Cambridge University Press (1991).
  24. K. Fukuda, N. Imai, S. Kavamura, K. Matsumura, and N. Ibaraki, “Switching performance of high rate deposition processing α-Si:H TFTs,” Jour. Non Cryst. Sol. 198–200, 1137–1140 (1996).
    [CrossRef]
  25. Y. Chen and S. Wagner, “Inverter made of complementary p and n channel transistors using a single directly deposited microcrystalline silicon film,” Appl. Phys. Lett. 75, 1125 (1999).
    [CrossRef]
  26. A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
    [CrossRef]
  27. M.N. Troccoli, A. J. Roudbari, T. Chuang, and M. K. Hatalis, “Polysilicon TFT circuits on flexible stainless steel foils,” Solid-State Electronics 50, 1080–1087 (2006).
    [CrossRef]
  28. ATLAS device simulation software user’s manual, SILVACO Int., Santa Clara, CA, (2005).
  29. J. Singh, “Effective mass of charge carriers in amorphous semiconductors and its applications,” Jour. Non Cryst. Sol. 120, 295–300 (1973).
  30. F.G. Della Corte, A. Rubino, and G. Cocorullo, “Simulation study and realisation of an α-Si:H emitter on GaAs,” Solid-State Electronics 42, 1819–1825 (1998).
    [CrossRef]

2007 (1)

2006 (5)

D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express 14, 10838–10843 (2006).
[CrossRef] [PubMed]

F.G. Della Corte, M. Gagliardi, M. A. Nigro, and C. Summonte “In-guide pump and probe characterization of photoinduced absorption in hydrogenated amorphous silicon thin films,” J. Appl. Phys. 100, 033104 (2006).
[CrossRef]

C. A. Barrios, “Electrooptic Modulation of Multisilicon-on-Insulator Photonic Wires,” Journal of Lightwave Technology 24, 2146–2155 (2006).
[CrossRef]

A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
[CrossRef]

M.N. Troccoli, A. J. Roudbari, T. Chuang, and M. K. Hatalis, “Polysilicon TFT circuits on flexible stainless steel foils,” Solid-State Electronics 50, 1080–1087 (2006).
[CrossRef]

2005 (2)

E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44, 7532–7539 (2005).
[CrossRef] [PubMed]

A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 µm,” Appl. Phys. Lett. 86, 20115 (2005).
[CrossRef]

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. Amaral, and A.R. Ramos, “Properties of α-Si:H TFTs using silicon carbonitride as dielectric”, Jour. Non Cryst. Sol. 338–340, 797–801 (2004).
[CrossRef]

1999 (1)

Y. Chen and S. Wagner, “Inverter made of complementary p and n channel transistors using a single directly deposited microcrystalline silicon film,” Appl. Phys. Lett. 75, 1125 (1999).
[CrossRef]

1998 (2)

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Quantum Electron 4, 997–1001 (1998).
[CrossRef]

F.G. Della Corte, A. Rubino, and G. Cocorullo, “Simulation study and realisation of an α-Si:H emitter on GaAs,” Solid-State Electronics 42, 1819–1825 (1998).
[CrossRef]

1996 (3)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21, 2002–2004 (1996).
[CrossRef] [PubMed]

K. Fukuda, N. Imai, S. Kavamura, K. Matsumura, and N. Ibaraki, “Switching performance of high rate deposition processing α-Si:H TFTs,” Jour. Non Cryst. Sol. 198–200, 1137–1140 (1996).
[CrossRef]

M. Zelikson, K. Weiser, A. Chack, and J. Kanicki, “Direct determination of the quadratic electro-optic coefficient in an α-Si:H based waveguide,” Jour. Non Cryst. Sol. 198–200, 107–110 (1996).
[CrossRef]

1995 (1)

G. Cocorullo, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon thermo-optical micromodulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

1994 (1)

M. Okamura and S. Suzuki, “Infrared photodetection using α-Si:H photodiode,” IEEE Photon. Technol. Lett. 6, 412–414 (1994).
[CrossRef]

1993 (1)

R. A. Soref, “Silicon-based optoelectronics,” in Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

1991 (1)

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Optical Modulators a 1.3 µm based on Free Carrier Absorption,” IEEE Electron Device Lett. 12, 276–278 (1991).
[CrossRef]

1981 (1)

1973 (1)

J. Singh, “Effective mass of charge carriers in amorphous semiconductors and its applications,” Jour. Non Cryst. Sol. 120, 295–300 (1973).

Amaral, A.

G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. Amaral, and A.R. Ramos, “Properties of α-Si:H TFTs using silicon carbonitride as dielectric”, Jour. Non Cryst. Sol. 338–340, 797–801 (2004).
[CrossRef]

Amer, N. M.

Barrios, C. A.

C. A. Barrios, “Electrooptic Modulation of Multisilicon-on-Insulator Photonic Wires,” Journal of Lightwave Technology 24, 2146–2155 (2006).
[CrossRef]

Benyattou, T.

B. Han, R. Orobtchouk, T. Benyattou, P.R.A. Binetti, S. Jeannot, J. M. Fedeli, and X.J.M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proc. ECIO 07, Copenhagen, Denmark, pp. 1–4 (2007).
[PubMed]

Binetti, P.R.A.

B. Han, R. Orobtchouk, T. Benyattou, P.R.A. Binetti, S. Jeannot, J. M. Fedeli, and X.J.M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proc. ECIO 07, Copenhagen, Denmark, pp. 1–4 (2007).
[PubMed]

Boccara, A. C.

Burrell, G. J.

T. S. Moss, G. J. Burrell, and B. Ellis, “Semiconductor Opto-Electronics,” London Butterwoth, (1973).

Cancellieri, G.

G. Cancellieri and U. Ravaioli, “Measurements of Optical Fibers and Devices: Theory and Experiments”, Dedham MA, Artech House (1984).

Cassan, E.

Centurioni, E.

Chack, A.

M. Zelikson, K. Weiser, A. Chack, and J. Kanicki, “Direct determination of the quadratic electro-optic coefficient in an α-Si:H based waveguide,” Jour. Non Cryst. Sol. 198–200, 107–110 (1996).
[CrossRef]

Chen, Y.

Y. Chen and S. Wagner, “Inverter made of complementary p and n channel transistors using a single directly deposited microcrystalline silicon film,” Appl. Phys. Lett. 75, 1125 (1999).
[CrossRef]

Cheng, I-Chun

A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
[CrossRef]

Chetrit, Y.

Chuang, T.

M.N. Troccoli, A. J. Roudbari, T. Chuang, and M. K. Hatalis, “Polysilicon TFT circuits on flexible stainless steel foils,” Solid-State Electronics 50, 1080–1087 (2006).
[CrossRef]

Ciftcioglu, B.

Cocorullo, G.

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Quantum Electron 4, 997–1001 (1998).
[CrossRef]

F.G. Della Corte, A. Rubino, and G. Cocorullo, “Simulation study and realisation of an α-Si:H emitter on GaAs,” Solid-State Electronics 42, 1819–1825 (1998).
[CrossRef]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21, 2002–2004 (1996).
[CrossRef] [PubMed]

G. Cocorullo, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon thermo-optical micromodulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

Coffa, S.

A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 µm,” Appl. Phys. Lett. 86, 20115 (2005).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Coppola, G.

A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 µm,” Appl. Phys. Lett. 86, 20115 (2005).
[CrossRef]

Corte, F. G. Della

Corte, F.G. Della

F.G. Della Corte, M. Gagliardi, M. A. Nigro, and C. Summonte “In-guide pump and probe characterization of photoinduced absorption in hydrogenated amorphous silicon thin films,” J. Appl. Phys. 100, 033104 (2006).
[CrossRef]

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Quantum Electron 4, 997–1001 (1998).
[CrossRef]

F.G. Della Corte, A. Rubino, and G. Cocorullo, “Simulation study and realisation of an α-Si:H emitter on GaAs,” Solid-State Electronics 42, 1819–1825 (1998).
[CrossRef]

Damlencourt, J. F.

de Carvalho, C. Nunes

G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. Amaral, and A.R. Ramos, “Properties of α-Si:H TFTs using silicon carbonitride as dielectric”, Jour. Non Cryst. Sol. 338–340, 797–801 (2004).
[CrossRef]

De Rosa, R.

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Quantum Electron 4, 997–1001 (1998).
[CrossRef]

Ellis, B.

T. S. Moss, G. J. Burrell, and B. Ellis, “Semiconductor Opto-Electronics,” London Butterwoth, (1973).

Fedeli, J. M.

B. Han, R. Orobtchouk, T. Benyattou, P.R.A. Binetti, S. Jeannot, J. M. Fedeli, and X.J.M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proc. ECIO 07, Copenhagen, Denmark, pp. 1–4 (2007).
[PubMed]

Fédéli, J. M.

Forrest, S. R.

A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
[CrossRef]

Fortunato, E.

G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. Amaral, and A.R. Ramos, “Properties of α-Si:H TFTs using silicon carbonitride as dielectric”, Jour. Non Cryst. Sol. 338–340, 797–801 (2004).
[CrossRef]

Fournier, D.

Fukuda, K.

K. Fukuda, N. Imai, S. Kavamura, K. Matsumura, and N. Ibaraki, “Switching performance of high rate deposition processing α-Si:H TFTs,” Jour. Non Cryst. Sol. 198–200, 1137–1140 (1996).
[CrossRef]

Gagliardi, M.

F.G. Della Corte, M. Gagliardi, M. A. Nigro, and C. Summonte “In-guide pump and probe characterization of photoinduced absorption in hydrogenated amorphous silicon thin films,” J. Appl. Phys. 100, 033104 (2006).
[CrossRef]

Halbout, J. M.

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Optical Modulators a 1.3 µm based on Free Carrier Absorption,” IEEE Electron Device Lett. 12, 276–278 (1991).
[CrossRef]

Halbwax, M.

Han, B.

B. Han, R. Orobtchouk, T. Benyattou, P.R.A. Binetti, S. Jeannot, J. M. Fedeli, and X.J.M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proc. ECIO 07, Copenhagen, Denmark, pp. 1–4 (2007).
[PubMed]

Hatalis, M. K.

M.N. Troccoli, A. J. Roudbari, T. Chuang, and M. K. Hatalis, “Polysilicon TFT circuits on flexible stainless steel foils,” Solid-State Electronics 50, 1080–1087 (2006).
[CrossRef]

Hirata, Tomoki

T. Tabei, Tomoki Hirata, K. Kajikawa, and H. Sunami, “Potentiality of Silicon Optical Modulator Based on Free-Carrier Absorption,” IEEE International Electron Devices Meeting, pp. 1023–1026 (2007).
[CrossRef]

Holmes, R. J.

A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
[CrossRef]

Ibaraki, N.

K. Fukuda, N. Imai, S. Kavamura, K. Matsumura, and N. Ibaraki, “Switching performance of high rate deposition processing α-Si:H TFTs,” Jour. Non Cryst. Sol. 198–200, 1137–1140 (1996).
[CrossRef]

Imai, N.

K. Fukuda, N. Imai, S. Kavamura, K. Matsumura, and N. Ibaraki, “Switching performance of high rate deposition processing α-Si:H TFTs,” Jour. Non Cryst. Sol. 198–200, 1137–1140 (1996).
[CrossRef]

Iodice, M.

G. Cocorullo, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon thermo-optical micromodulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

Izhaky, N.

Jackson, W. B.

Jeannot, S.

B. Han, R. Orobtchouk, T. Benyattou, P.R.A. Binetti, S. Jeannot, J. M. Fedeli, and X.J.M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proc. ECIO 07, Copenhagen, Denmark, pp. 1–4 (2007).
[PubMed]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Kajikawa, K.

T. Tabei, Tomoki Hirata, K. Kajikawa, and H. Sunami, “Potentiality of Silicon Optical Modulator Based on Free-Carrier Absorption,” IEEE International Electron Devices Meeting, pp. 1023–1026 (2007).
[CrossRef]

Kanicki, J.

M. Zelikson, K. Weiser, A. Chack, and J. Kanicki, “Direct determination of the quadratic electro-optic coefficient in an α-Si:H based waveguide,” Jour. Non Cryst. Sol. 198–200, 107–110 (1996).
[CrossRef]

Kattamis, A. Z.

A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
[CrossRef]

Kavamura, S.

K. Fukuda, N. Imai, S. Kavamura, K. Matsumura, and N. Ibaraki, “Switching performance of high rate deposition processing α-Si:H TFTs,” Jour. Non Cryst. Sol. 198–200, 1137–1140 (1996).
[CrossRef]

Knights, A. P.

G. T. Reed and A. P. Knights, “Silicon Photonics: An Introduction,” Wiley, New York (2004).

Laval, S.

Lavareda, G.

G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. Amaral, and A.R. Ramos, “Properties of α-Si:H TFTs using silicon carbonitride as dielectric”, Jour. Non Cryst. Sol. 338–340, 797–801 (2004).
[CrossRef]

Le Roux, X.

Leijtens, X.J.M.

B. Han, R. Orobtchouk, T. Benyattou, P.R.A. Binetti, S. Jeannot, J. M. Fedeli, and X.J.M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proc. ECIO 07, Copenhagen, Denmark, pp. 1–4 (2007).
[PubMed]

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Libertino, S.

A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 µm,” Appl. Phys. Lett. 86, 20115 (2005).
[CrossRef]

Liu, A.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Long, Ke

A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
[CrossRef]

Maine, S.

Marris-Morini, D.

Matsumura, K.

K. Fukuda, N. Imai, S. Kavamura, K. Matsumura, and N. Ibaraki, “Switching performance of high rate deposition processing α-Si:H TFTs,” Jour. Non Cryst. Sol. 198–200, 1137–1140 (1996).
[CrossRef]

May, P. G.

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Optical Modulators a 1.3 µm based on Free Carrier Absorption,” IEEE Electron Device Lett. 12, 276–278 (1991).
[CrossRef]

Moss, T. S.

T. S. Moss, G. J. Burrell, and B. Ellis, “Semiconductor Opto-Electronics,” London Butterwoth, (1973).

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Nigro, M. A.

F.G. Della Corte, M. Gagliardi, M. A. Nigro, and C. Summonte “In-guide pump and probe characterization of photoinduced absorption in hydrogenated amorphous silicon thin films,” J. Appl. Phys. 100, 033104 (2006).
[CrossRef]

Okamura, M.

M. Okamura and S. Suzuki, “Infrared photodetection using α-Si:H photodiode,” IEEE Photon. Technol. Lett. 6, 412–414 (1994).
[CrossRef]

Orobtchouk, R.

B. Han, R. Orobtchouk, T. Benyattou, P.R.A. Binetti, S. Jeannot, J. M. Fedeli, and X.J.M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proc. ECIO 07, Copenhagen, Denmark, pp. 1–4 (2007).
[PubMed]

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Pascal, D.

Ramos, A.R.

G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. Amaral, and A.R. Ramos, “Properties of α-Si:H TFTs using silicon carbonitride as dielectric”, Jour. Non Cryst. Sol. 338–340, 797–801 (2004).
[CrossRef]

Ravaioli, U.

G. Cancellieri and U. Ravaioli, “Measurements of Optical Fibers and Devices: Theory and Experiments”, Dedham MA, Artech House (1984).

Reed, G. T.

G. T. Reed and A. P. Knights, “Silicon Photonics: An Introduction,” Wiley, New York (2004).

Rendina, I.

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Quantum Electron 4, 997–1001 (1998).
[CrossRef]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21, 2002–2004 (1996).
[CrossRef] [PubMed]

G. Cocorullo, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon thermo-optical micromodulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

Roudbari, A. J.

M.N. Troccoli, A. J. Roudbari, T. Chuang, and M. K. Hatalis, “Polysilicon TFT circuits on flexible stainless steel foils,” Solid-State Electronics 50, 1080–1087 (2006).
[CrossRef]

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Rubino, A.

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Quantum Electron 4, 997–1001 (1998).
[CrossRef]

F.G. Della Corte, A. Rubino, and G. Cocorullo, “Simulation study and realisation of an α-Si:H emitter on GaAs,” Solid-State Electronics 42, 1819–1825 (1998).
[CrossRef]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Sarro, P.M.

G. Cocorullo, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon thermo-optical micromodulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

Sciuto, A.

A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 µm,” Appl. Phys. Lett. 86, 20115 (2005).
[CrossRef]

Singh, J.

J. Singh, “Effective mass of charge carriers in amorphous semiconductors and its applications,” Jour. Non Cryst. Sol. 120, 295–300 (1973).

Soref, R. A.

R. A. Soref, “Silicon-based optoelectronics,” in Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

Street, R. A

R. A Street, “Hydrogenated Amorphous Silicon,” Cambridge University Press (1991).

Sturm, J. C.

A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
[CrossRef]

Summonte, C.

F.G. Della Corte, M. Gagliardi, M. A. Nigro, and C. Summonte “In-guide pump and probe characterization of photoinduced absorption in hydrogenated amorphous silicon thin films,” J. Appl. Phys. 100, 033104 (2006).
[CrossRef]

Sunami, H.

T. Tabei, Tomoki Hirata, K. Kajikawa, and H. Sunami, “Potentiality of Silicon Optical Modulator Based on Free-Carrier Absorption,” IEEE International Electron Devices Meeting, pp. 1023–1026 (2007).
[CrossRef]

Suzuki, S.

M. Okamura and S. Suzuki, “Infrared photodetection using α-Si:H photodiode,” IEEE Photon. Technol. Lett. 6, 412–414 (1994).
[CrossRef]

Tabei, T.

T. Tabei, Tomoki Hirata, K. Kajikawa, and H. Sunami, “Potentiality of Silicon Optical Modulator Based on Free-Carrier Absorption,” IEEE International Electron Devices Meeting, pp. 1023–1026 (2007).
[CrossRef]

Terzini, E.

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Quantum Electron 4, 997–1001 (1998).
[CrossRef]

Treyz, G. V.

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Optical Modulators a 1.3 µm based on Free Carrier Absorption,” IEEE Electron Device Lett. 12, 276–278 (1991).
[CrossRef]

Troccoli, M.N.

M.N. Troccoli, A. J. Roudbari, T. Chuang, and M. K. Hatalis, “Polysilicon TFT circuits on flexible stainless steel foils,” Solid-State Electronics 50, 1080–1087 (2006).
[CrossRef]

Vivien, L.

Wagner, S.

Y. Chen and S. Wagner, “Inverter made of complementary p and n channel transistors using a single directly deposited microcrystalline silicon film,” Appl. Phys. Lett. 75, 1125 (1999).
[CrossRef]

Wagner, Sigurd

A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
[CrossRef]

Weiser, K.

M. Zelikson, K. Weiser, A. Chack, and J. Kanicki, “Direct determination of the quadratic electro-optic coefficient in an α-Si:H based waveguide,” Jour. Non Cryst. Sol. 198–200, 107–110 (1996).
[CrossRef]

Zelikson, M.

M. Zelikson, K. Weiser, A. Chack, and J. Kanicki, “Direct determination of the quadratic electro-optic coefficient in an α-Si:H based waveguide,” Jour. Non Cryst. Sol. 198–200, 107–110 (1996).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. Sciuto, S. Libertino, S. Coffa, and G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 µm,” Appl. Phys. Lett. 86, 20115 (2005).
[CrossRef]

Y. Chen and S. Wagner, “Inverter made of complementary p and n channel transistors using a single directly deposited microcrystalline silicon film,” Appl. Phys. Lett. 75, 1125 (1999).
[CrossRef]

IEEE Electron Device Lett. (2)

A. Z. Kattamis, R. J. Holmes, I-Chun Cheng, Ke Long, J. C. Sturm, S. R. Forrest, and Sigurd Wagner, “High mobility nanocrystalline silicon transistors on clear plastic substrates,” IEEE Electron Device Lett. 27, 49–51 (2006).
[CrossRef]

G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Optical Modulators a 1.3 µm based on Free Carrier Absorption,” IEEE Electron Device Lett. 12, 276–278 (1991).
[CrossRef]

IEEE J. Quantum Electron (1)

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Quantum Electron 4, 997–1001 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. Cocorullo, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon thermo-optical micromodulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

M. Okamura and S. Suzuki, “Infrared photodetection using α-Si:H photodiode,” IEEE Photon. Technol. Lett. 6, 412–414 (1994).
[CrossRef]

in Proc. IEEE (1)

R. A. Soref, “Silicon-based optoelectronics,” in Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

J. Appl. Phys. (1)

F.G. Della Corte, M. Gagliardi, M. A. Nigro, and C. Summonte “In-guide pump and probe characterization of photoinduced absorption in hydrogenated amorphous silicon thin films,” J. Appl. Phys. 100, 033104 (2006).
[CrossRef]

Jour. Non Cryst. Sol. (4)

M. Zelikson, K. Weiser, A. Chack, and J. Kanicki, “Direct determination of the quadratic electro-optic coefficient in an α-Si:H based waveguide,” Jour. Non Cryst. Sol. 198–200, 107–110 (1996).
[CrossRef]

K. Fukuda, N. Imai, S. Kavamura, K. Matsumura, and N. Ibaraki, “Switching performance of high rate deposition processing α-Si:H TFTs,” Jour. Non Cryst. Sol. 198–200, 1137–1140 (1996).
[CrossRef]

J. Singh, “Effective mass of charge carriers in amorphous semiconductors and its applications,” Jour. Non Cryst. Sol. 120, 295–300 (1973).

G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. Amaral, and A.R. Ramos, “Properties of α-Si:H TFTs using silicon carbonitride as dielectric”, Jour. Non Cryst. Sol. 338–340, 797–801 (2004).
[CrossRef]

Journal of Lightwave Technology (1)

C. A. Barrios, “Electrooptic Modulation of Multisilicon-on-Insulator Photonic Wires,” Journal of Lightwave Technology 24, 2146–2155 (2006).
[CrossRef]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Solid-State Electronics (2)

F.G. Della Corte, A. Rubino, and G. Cocorullo, “Simulation study and realisation of an α-Si:H emitter on GaAs,” Solid-State Electronics 42, 1819–1825 (1998).
[CrossRef]

M.N. Troccoli, A. J. Roudbari, T. Chuang, and M. K. Hatalis, “Polysilicon TFT circuits on flexible stainless steel foils,” Solid-State Electronics 50, 1080–1087 (2006).
[CrossRef]

Other (8)

ATLAS device simulation software user’s manual, SILVACO Int., Santa Clara, CA, (2005).

RSoft Photonics CAD Layout User Guide, Rsoft Design Group, Inc. Physical Layer Division, 200 Executive Blvd. Ossining, NY 10562.

B. Han, R. Orobtchouk, T. Benyattou, P.R.A. Binetti, S. Jeannot, J. M. Fedeli, and X.J.M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proc. ECIO 07, Copenhagen, Denmark, pp. 1–4 (2007).
[PubMed]

T. S. Moss, G. J. Burrell, and B. Ellis, “Semiconductor Opto-Electronics,” London Butterwoth, (1973).

G. Cancellieri and U. Ravaioli, “Measurements of Optical Fibers and Devices: Theory and Experiments”, Dedham MA, Artech House (1984).

R. A Street, “Hydrogenated Amorphous Silicon,” Cambridge University Press (1991).

G. T. Reed and A. P. Knights, “Silicon Photonics: An Introduction,” Wiley, New York (2004).

T. Tabei, Tomoki Hirata, K. Kajikawa, and H. Sunami, “Potentiality of Silicon Optical Modulator Based on Free-Carrier Absorption,” IEEE International Electron Devices Meeting, pp. 1023–1026 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic cross sections of the realised planar waveguides and corresponding refractive index profiles. The crystalline silicon substrate is 300 µm thick.

Fig. 2.
Fig. 2.

TE (left) and TM (right) fundamental optical mode-field profiles of the three bi-layer waveguide.

Fig. 3.
Fig. 3.

TE (left) and TM (right) fundamental optical mode-field profiles of the six bi-layer waveguide.

Fig. 4.
Fig. 4.

Dependence of M on the modulating signal amplitude for three and six bi-layer samples.

Fig. 5.
Fig. 5.

Output light power and applied voltage for a six bi-layer 1 cm long waveguide. The modulating signal has Vmin=0 V, Vmax=15 V, duty-cycle=50%, frequecy=10Hz.

Fig. 6.
Fig. 6.

Modulation depth vs. Frequency. The modulating signal voltage amplitude for the six bi-layer, 1-cm-long waveguide is V=20V, duty-cycle=50%.

Fig. 7.
Fig. 7.

Electron (left) and hole (right) concentration depth profiles calculated in the α-Si:H layer close to the α-Si:H/α-SiCN interface. The applied biases are from 1.5 V to 30 V.

Fig. 8.
Fig. 8.

Comparison of M at various modulating signal amplitudes: TE0, TM0, Experimental data (unpolarized input), for the three bi-layer sample.

Fig. 9.
Fig. 9.

Experimental dependence of the three bi-layer device capacitance on frequency and its best fittings through three fitting functions.

Tables (3)

Tables Icon

Table 1. PECVD process parameters for the three bi-layer device: frequency, power, pressure, substrate temperature, time. For the thinner six bi-layer device the deposition times are scaled accordingly. Refractive index n and absorption coefficient α are measured at 1.55 µm. Process gas flows measured in Standard Cubic Centimetres per Minute (sccm).

Tables Icon

Table 2. Physical parameters used for the α-Si:H layer for the electrical simulations.

Tables Icon

Table 3. Fitting functions and corresponding RMS errors

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n = e 2 λ 2 8 π 2 c 2 ε 0 n ( Δ N e m e + Δ N h m h )
Δ α = e 3 λ 2 4 π 2 c 3 ε 0 n ( Δ N e m e 2 μ e + Δ N h m h 2 μ h )
M = I MAX I MIN I MAX

Metrics