Abstract

In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
    [CrossRef] [PubMed]
  2. E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
    [CrossRef]
  3. K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: timeresolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
    [CrossRef] [PubMed]
  4. C. B. Schaffer and N. Nishimura and E. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laserinduced breakdown in water from femtoseconds to microseconds," Opt. Express 3, 196-204 (2002).
  5. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
    [CrossRef]
  6. K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, "Investigation of laser-induced cell lysis using time-resolved imaging," Appl. Phys. Lett. 84, 2940-2942 (2004).
    [CrossRef]
  7. E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, "Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus," J. Fluid Mech. 433, 283-314 (2001).
  8. A. B. Gojani and K. Takayama, "Experimental determination of shock Hugoniot for water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin," Mater. Sci. Forum 566, 23-28 (2008).
    [CrossRef]
  9. A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Blrngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237-245 (1991).
    [CrossRef]
  10. J. Noack, D. X. Hammer, G. Noojin, B. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7496 (1998).
    [CrossRef]
  11. M. H. Niemz, E. G. Klancnik, and J. F. Bille, "Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF Oscillator/Regenerative Amplifier Laser," Laser Surg. Med. 11, 426-431 (1991).
    [CrossRef]
  12. K. Nagayama, Y. Mori, Y. Motegi, and M. Nakahara, "Shock Hugoniot for biological materials," Shock Waves 15, 267-275 (2006).
    [CrossRef]
  13. A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
    [CrossRef]
  14. B. Zysset, J. G. Fujimoto and and T. F. Deutsch, "Time-resolved measurements of picosecond opticol breakdown," Appl. Phys. B 48, 137-147 (1989).
    [CrossRef]
  15. A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-166 (1996).
    [CrossRef]
  16. F. Docchi, P. Regond, M. R. C. Capon, and J. Mellerio, "Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times," Appl. Opt. 27, 3661-3669 (1988).
    [CrossRef]

2008 (1)

A. B. Gojani and K. Takayama, "Experimental determination of shock Hugoniot for water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin," Mater. Sci. Forum 566, 23-28 (2008).
[CrossRef]

2006 (3)

E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: timeresolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

K. Nagayama, Y. Mori, Y. Motegi, and M. Nakahara, "Shock Hugoniot for biological materials," Shock Waves 15, 267-275 (2006).
[CrossRef]

2005 (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

2004 (1)

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, "Investigation of laser-induced cell lysis using time-resolved imaging," Appl. Phys. Lett. 84, 2940-2942 (2004).
[CrossRef]

2003 (1)

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

2002 (1)

C. B. Schaffer and N. Nishimura and E. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laserinduced breakdown in water from femtoseconds to microseconds," Opt. Express 3, 196-204 (2002).

2001 (1)

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, "Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus," J. Fluid Mech. 433, 283-314 (2001).

1998 (1)

J. Noack, D. X. Hammer, G. Noojin, B. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7496 (1998).
[CrossRef]

1996 (2)

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-166 (1996).
[CrossRef]

1991 (2)

M. H. Niemz, E. G. Klancnik, and J. F. Bille, "Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF Oscillator/Regenerative Amplifier Laser," Laser Surg. Med. 11, 426-431 (1991).
[CrossRef]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Blrngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237-245 (1991).
[CrossRef]

1989 (1)

B. Zysset, J. G. Fujimoto and and T. F. Deutsch, "Time-resolved measurements of picosecond opticol breakdown," Appl. Phys. B 48, 137-147 (1989).
[CrossRef]

1988 (1)

Bille, J. F.

M. H. Niemz, E. G. Klancnik, and J. F. Bille, "Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF Oscillator/Regenerative Amplifier Laser," Laser Surg. Med. 11, 426-431 (1991).
[CrossRef]

Blrngruber, R.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Blrngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237-245 (1991).
[CrossRef]

Brujan, E. A.

E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, "Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus," J. Fluid Mech. 433, 283-314 (2001).

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-166 (1996).
[CrossRef]

Capon, M. R. C.

Da Silva, L.

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

Deutsch, T. F.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Blrngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237-245 (1991).
[CrossRef]

Docchi, F.

Doukas, A. G.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Blrngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237-245 (1991).
[CrossRef]

Feit, M.

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

Frisoli, J. K.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Blrngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237-245 (1991).
[CrossRef]

Glezer, E.

C. B. Schaffer and N. Nishimura and E. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laserinduced breakdown in water from femtoseconds to microseconds," Opt. Express 3, 196-204 (2002).

Glinsky, M.

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

Gojani, A. B.

A. B. Gojani and K. Takayama, "Experimental determination of shock Hugoniot for water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin," Mater. Sci. Forum 566, 23-28 (2008).
[CrossRef]

Guerra, A.

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, "Investigation of laser-induced cell lysis using time-resolved imaging," Appl. Phys. Lett. 84, 2940-2942 (2004).
[CrossRef]

Hammer, D. X.

J. Noack, D. X. Hammer, G. Noojin, B. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7496 (1998).
[CrossRef]

Hellman, A. N.

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: timeresolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Kim, A. M. T.

C. B. Schaffer and N. Nishimura and E. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laserinduced breakdown in water from femtoseconds to microseconds," Opt. Express 3, 196-204 (2002).

Klancnik, E. G.

M. H. Niemz, E. G. Klancnik, and J. F. Bille, "Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF Oscillator/Regenerative Amplifier Laser," Laser Surg. Med. 11, 426-431 (1991).
[CrossRef]

Mammini, B.

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

Mazur, E.

C. B. Schaffer and N. Nishimura and E. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laserinduced breakdown in water from femtoseconds to microseconds," Opt. Express 3, 196-204 (2002).

Mellerio, J.

Mori, Y.

K. Nagayama, Y. Mori, Y. Motegi, and M. Nakahara, "Shock Hugoniot for biological materials," Shock Waves 15, 267-275 (2006).
[CrossRef]

Motegi, Y.

K. Nagayama, Y. Mori, Y. Motegi, and M. Nakahara, "Shock Hugoniot for biological materials," Shock Waves 15, 267-275 (2006).
[CrossRef]

Nagayama, K.

K. Nagayama, Y. Mori, Y. Motegi, and M. Nakahara, "Shock Hugoniot for biological materials," Shock Waves 15, 267-275 (2006).
[CrossRef]

Nahen, K.

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, "Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus," J. Fluid Mech. 433, 283-314 (2001).

Nakahara, M.

K. Nagayama, Y. Mori, Y. Motegi, and M. Nakahara, "Shock Hugoniot for biological materials," Shock Waves 15, 267-275 (2006).
[CrossRef]

Niemz, M. H.

M. H. Niemz, E. G. Klancnik, and J. F. Bille, "Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF Oscillator/Regenerative Amplifier Laser," Laser Surg. Med. 11, 426-431 (1991).
[CrossRef]

Nishimura, N.

C. B. Schaffer and N. Nishimura and E. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laserinduced breakdown in water from femtoseconds to microseconds," Opt. Express 3, 196-204 (2002).

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

J. Noack, D. X. Hammer, G. Noojin, B. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7496 (1998).
[CrossRef]

Noojin, G.

J. Noack, D. X. Hammer, G. Noojin, B. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7496 (1998).
[CrossRef]

Oraevsky, A.

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-166 (1996).
[CrossRef]

Perry, M.

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

Quinto-Su, P. A.

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: timeresolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

Rau, K. R.

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: timeresolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, "Investigation of laser-induced cell lysis using time-resolved imaging," Appl. Phys. Lett. 84, 2940-2942 (2004).
[CrossRef]

Regond, P.

Rockwell, B.

J. Noack, D. X. Hammer, G. Noojin, B. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7496 (1998).
[CrossRef]

Rubenchik, A.

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer and N. Nishimura and E. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laserinduced breakdown in water from femtoseconds to microseconds," Opt. Express 3, 196-204 (2002).

Schmidt, P.

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, "Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus," J. Fluid Mech. 433, 283-314 (2001).

Small, W.

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

Stuart, B.

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

Takayama, K.

A. B. Gojani and K. Takayama, "Experimental determination of shock Hugoniot for water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin," Mater. Sci. Forum 566, 23-28 (2008).
[CrossRef]

Venugopalan, V.

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: timeresolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, "Investigation of laser-induced cell lysis using time-resolved imaging," Appl. Phys. Lett. 84, 2940-2942 (2004).
[CrossRef]

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

Vogel, A.

E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, "Investigation of laser-induced cell lysis using time-resolved imaging," Appl. Phys. Lett. 84, 2940-2942 (2004).
[CrossRef]

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, "Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus," J. Fluid Mech. 433, 283-314 (2001).

J. Noack, D. X. Hammer, G. Noojin, B. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7496 (1998).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-166 (1996).
[CrossRef]

Zweig, A. D.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Blrngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237-245 (1991).
[CrossRef]

Zysset, B.

B. Zysset, J. G. Fujimoto and and T. F. Deutsch, "Time-resolved measurements of picosecond opticol breakdown," Appl. Phys. B 48, 137-147 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

B. Zysset, J. G. Fujimoto and and T. F. Deutsch, "Time-resolved measurements of picosecond opticol breakdown," Appl. Phys. B 48, 137-147 (1989).
[CrossRef]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Blrngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237-245 (1991).
[CrossRef]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, "Investigation of laser-induced cell lysis using time-resolved imaging," Appl. Phys. Lett. 84, 2940-2942 (2004).
[CrossRef]

Biophys. J. (1)

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: timeresolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
[CrossRef] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-166 (1996).
[CrossRef]

J. Appl. Phys. (1)

J. Noack, D. X. Hammer, G. Noojin, B. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7496 (1998).
[CrossRef]

J. Fluid Mech. (2)

E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, "Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus," J. Fluid Mech. 433, 283-314 (2001).

Laser Surg. Med. (1)

M. H. Niemz, E. G. Klancnik, and J. F. Bille, "Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF Oscillator/Regenerative Amplifier Laser," Laser Surg. Med. 11, 426-431 (1991).
[CrossRef]

Mater. Sci. Forum (1)

A. B. Gojani and K. Takayama, "Experimental determination of shock Hugoniot for water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin," Mater. Sci. Forum 566, 23-28 (2008).
[CrossRef]

Opt. Express (1)

C. B. Schaffer and N. Nishimura and E. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laserinduced breakdown in water from femtoseconds to microseconds," Opt. Express 3, 196-204 (2002).

Shock Waves (1)

K. Nagayama, Y. Mori, Y. Motegi, and M. Nakahara, "Shock Hugoniot for biological materials," Shock Waves 15, 267-275 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Pulse-pulse repeatability of the experimental system shown by the measured bubble size at 300ns. Each data point was from a fresh exposure site.

Fig. 2.
Fig. 2.

Optical system. Two Nd:YAG lasers, one of which is frequency doubled, deliver pulses on target with a delay controlled by a DG535. The 532 nm pump beam is focused on target while the 1064 nm beam passes the target collimated. The two locations of the CCD are used to image the sample in transmission and reflection. The system can be triggered by either a hand-held trigger or through the computer; both of which control the CCD which then sends a trigger to the DG535.

Fig. 3.
Fig. 3.

Log-log plot of the formation of a bubble. The shock wave diameters are from linear fits to the measured points; the points are not on the plot to reduce cluttering. The laser pulse drawn is found from a fit to the pulse location as discussed below and shown in Fig. 5. Picture insert; image captured by the CCD camera taken 60 ns after the arrival of a 250 µJ laser pulse into the agar sample. The bubble and shock wave fronts are noted.

Fig. 4.
Fig. 4.

The shock wave front position vs time, Insert: Shock velocity vs. pulse energy extracted from the shock position vs. time linear fit.

Fig. 5.
Fig. 5.

Shock wave positions’ x-intercept vs pulse power as found in Fig. 4 fit to Eqn. 4. The fit gave a shock wave threshold energy of 71 µJ/pulse, and a pump to probe zero delay time of 11 ns.

Fig. 6.
Fig. 6.

Pressure difference between the shocked and unshocked regions. Pressure was obtained by the shock wave velocity and Eqn.6

Fig. 7.
Fig. 7.

Size evolution of bubbles formed by laser pulses of increasing energy. The time that marks the first collapse of the bubble is noted by a red dotted line. The maximum bubble sizes for per-pulse energies larger then 250µJ were bigger then the CCD-probe-beam field of view.

Fig. 8.
Fig. 8.

Ratio of energy in the bubble to energy in the laser pulse, and transmission of laser pulse energy. Bubble energy was inferred from Eqn. 11. Energies above 250 µJ/pulse formed bubbles whose maximum size was bigger than the field of view of the CCD.

Fig. 9.
Fig. 9.

A linear dependance of the bubble size at 1 ms to its’ maxium size. The size of the data point is proportional to the per pulse laser energy.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I n ( t ) = I 0 , n exp [ 2 ( t 0 t ) 2 τ 2 ]
t n = t 0 τ 2 Log I 0 , n I threshold
I threshold I 0 , n = E threshold E n
t n = t 0 τ 2 Log E n E threshold
P 1 + ρ 1 u 1 2 = P 2 + ρ 2 u 2 2
ρ 1 u 1 = ρ 2 u 2
ρ 1 = U U u 1 ρ 2
P 1 P 2 = ρ 2 U u 1
U = C 0 + S u 1
P 1 P 2 = ρ 2 U ( U C 0 S )
E B = 4 3 π ρ ( 0.915 T col ) 2 R max 5

Metrics