Abstract

A novel tunable multiband ultra-wide band (MB-UWB) pulses generation method using synchronously-apodized polarization modulation and birefringence time delay is proposed and demonstrated in this letter. Proper apodization profile is used to get MB-UWB pulses with spectra sidelobes suppression over 20dB. Five bands of MB-UWB pulses are generated by tuning the modulation frequency and transmitted over wireless channel. The central frequencies are from 4GHz to 6GHz and bandwidths larger than 500MHz. This method can be used in multiband modulation UWB over fiber systems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
    [CrossRef]
  2. M. Z. Win and R. A. Scholtz, "Ultra-wide bandwidth time hopping spread spectrum impulse radio for wireless multiple-access communications," IEEE Trans. Commun. 48, 679-689 (2000).
    [CrossRef]
  3. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
    [CrossRef]
  4. M. Ghavami, L. B. Michael, and R. Kohno, Ultra wide-band signals and systems in Communication Engineering, (Wiley, West Sussex, England, 2004).
    [CrossRef]
  5. Y. Kim, S. Kim, H. Jang S. Hur, J. Lee, and J. Jeong, "Performance evaluation for UWB signal transmissions in the distributed multi-cell environment using ROF technology," IEEE International Topical Meeting on Microwave Photonics, MWP�??05.
  6. Fed. Commun. Commission, Revision of Part 15 of the Commission�??s Rules Regarding Ultra-Wideband Transmission Systems, Apr. 2002. Tech. Rep., ET-Docket 98-153, FCC02-48.
  7. W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
    [CrossRef]
  8. W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
    [CrossRef]
  9. T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microw. Wirel. Compon. Lett. 15, 153-155 (2005).
    [CrossRef]
  10. F. Zeng, Q. Wang, and J. Yao, "An approach to all-optical UWB pulse generation," IEEE International Topical Meeting on Microwave Photonics, MWP�??06, P 13.
  11. F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
    [CrossRef]
  12. F. Zeng and J. P. Yao, "Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator," IEEE Photon. Technol. Lett.  18, 2062-2064 (2006).
    [CrossRef]
  13. Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
    [CrossRef] [PubMed]
  14. F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron. Lett. 43, 119-121 (2007).
    [CrossRef]
  15. H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
    [CrossRef]
  16. H. Chen, M. Chen, and S. Xie, "PolSK Label Over VSB-CSRZ Payload Scheme in AOLS Network," J. Lightwave Technol. 25, 1348-1355 (2007).
    [CrossRef]

2007 (3)

F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron. Lett. 43, 119-121 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

H. Chen, M. Chen, and S. Xie, "PolSK Label Over VSB-CSRZ Payload Scheme in AOLS Network," J. Lightwave Technol. 25, 1348-1355 (2007).
[CrossRef]

2006 (4)

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator," IEEE Photon. Technol. Lett.  18, 2062-2064 (2006).
[CrossRef]

2005 (2)

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microw. Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

2003 (2)

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

2000 (1)

M. Z. Win and R. A. Scholtz, "Ultra-wide bandwidth time hopping spread spectrum impulse radio for wireless multiple-access communications," IEEE Trans. Commun. 48, 679-689 (2000).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

Blais, S.

Chen, H.

H. Chen, M. Chen, and S. Xie, "PolSK Label Over VSB-CSRZ Payload Scheme in AOLS Network," J. Lightwave Technol. 25, 1348-1355 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

Chen, J. Y.

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

Chen, M.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

H. Chen, M. Chen, and S. Xie, "PolSK Label Over VSB-CSRZ Payload Scheme in AOLS Network," J. Lightwave Technol. 25, 1348-1355 (2007).
[CrossRef]

Chen, Y. C.

W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
[CrossRef]

Hirt, W.

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microw. Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microw. Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

Lin, W. P.

W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
[CrossRef]

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

Porcine, D.

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Qiu, C.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

Research, P.

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microw. Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

Scholtz, R. A.

M. Z. Win and R. A. Scholtz, "Ultra-wide bandwidth time hopping spread spectrum impulse radio for wireless multiple-access communications," IEEE Trans. Commun. 48, 679-689 (2000).
[CrossRef]

Wang, Q.

F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron. Lett. 43, 119-121 (2007).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

Win, M. Z.

M. Z. Win and R. A. Scholtz, "Ultra-wide bandwidth time hopping spread spectrum impulse radio for wireless multiple-access communications," IEEE Trans. Commun. 48, 679-689 (2000).
[CrossRef]

Xie, S.

H. Chen, M. Chen, and S. Xie, "PolSK Label Over VSB-CSRZ Payload Scheme in AOLS Network," J. Lightwave Technol. 25, 1348-1355 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

Yao, J.

Yao, J. P.

F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron. Lett. 43, 119-121 (2007).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator," IEEE Photon. Technol. Lett.  18, 2062-2064 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

Zeng, F.

F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron. Lett. 43, 119-121 (2007).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator," IEEE Photon. Technol. Lett.  18, 2062-2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

Zhang, J.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

J. Lightwave Technol. (1)

H. Chen, M. Chen, and S. Xie, "PolSK Label Over VSB-CSRZ Payload Scheme in AOLS Network," J. Lightwave Technol. 25, 1348-1355 (2007).
[CrossRef]

Electron. Lett. (2)

F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron. Lett. 43, 119-121 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, "UWB monocycle pulse generation by optical polarisation time delay method," Electron. Lett. 43, 542-543 (2007).
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microw. Mag. 4, 36-47 (2003).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microw. Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator," IEEE Photon. Technol. Lett.  18, 2062-2064 (2006).
[CrossRef]

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

IEEE Trans. Commun. (1)

M. Z. Win and R. A. Scholtz, "Ultra-wide bandwidth time hopping spread spectrum impulse radio for wireless multiple-access communications," IEEE Trans. Commun. 48, 679-689 (2000).
[CrossRef]

Opt. Lett. (1)

Other (4)

F. Zeng, Q. Wang, and J. Yao, "An approach to all-optical UWB pulse generation," IEEE International Topical Meeting on Microwave Photonics, MWP�??06, P 13.

M. Ghavami, L. B. Michael, and R. Kohno, Ultra wide-band signals and systems in Communication Engineering, (Wiley, West Sussex, England, 2004).
[CrossRef]

Y. Kim, S. Kim, H. Jang S. Hur, J. Lee, and J. Jeong, "Performance evaluation for UWB signal transmissions in the distributed multi-cell environment using ROF technology," IEEE International Topical Meeting on Microwave Photonics, MWP�??05.

Fed. Commun. Commission, Revision of Part 15 of the Commission�??s Rules Regarding Ultra-Wideband Transmission Systems, Apr. 2002. Tech. Rep., ET-Docket 98-153, FCC02-48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of proposed scheme.

Fig. 2.
Fig. 2.

Experimental Setup. DSO-digital sampling oscillator, EDFA-Erbium doped fiber amplifier, ESA-electrical spectrum analyser, FD-frequency divider, PC-polarization controller, PD-photo detector, PPG-pulse pattern generator, PM-phase modulator, PMF-polarization maintaining fiber.

Fig. 3.
Fig. 3.

Spectra of monocycle pulse pattern with different apodization profiles.

Fig. 4.
Fig. 4.

MB-UWB pulses with different trigger frequency before wireless transmission.

Fig. 5.
Fig. 5.

Normalized spectra of MBUWB bands with different trigger frequency before wireless transmission and FCC mask.

Fig. 6.
Fig. 6.

MB-UWB pulses with different trigger frequency after wireless transmission.

Fig. 7.
Fig. 7.

Normalized spectra of MB-UWB bands with different trigger frequency after wireless transmission and FCC mask.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S 1 ( t ) = k = 0 M B k · P ( t ) · E out · e ̂ out
S 2 ( t ) = k = 0 M A p ( t ) · B k · P ( t ) · E out · e ̂ out
S ( t ) = D 0 + A p ( t ) × k = 0 N { P ( t + 2 k T ) P [ t + ( 2 k + 1 ) T ] }

Metrics