Abstract

A novel technique for splicing a small core Ge-doped photonic crystal fiber (PCF) was demonstrated using a commercial fusion splicer with default discharge parameters for the splicing of two standard single mode fibers (SMFs). Additional discharge parameter adjustments are not required to splice the PCF to several different SMFs. A low splice loss of 1.0~1.4 dB is achieved. Low or no light reflection is expected at the splice joint due to the complete fusion of the two fiber ends. The splice joint has a high bending strength and does not break when the bending radius is decreased to 4 mm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, "Long period gratings in air-core photonic bandgap fibers," Opt. Express 16, 2784-2790 (2008).
    [CrossRef] [PubMed]
  3. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, "In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber," Opt. Letters 32, 1035-1037 (2007).
    [CrossRef]
  4. Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, "Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity," Opt. Lett. 31, 3414-3416 (2006).
    [CrossRef] [PubMed]
  5. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. J. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004).
    [CrossRef] [PubMed]
  6. J. Zagari, A. Argyros, N. A. Issa, G. Barton, G. Henry, M. C. J. Large, L. Poladian, and M. A. van Eijkelenborg, "Small-core single-mode microstructured polymer optical fiber with large external diameter," Opt. Lett. 29, 818-820 (2004).
    [CrossRef] [PubMed]
  7. P. J. Bennett, T. M. Monro, and D. J. Richardson, "Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization," Opt. Lett. 24, 1203-1205 (1999).
    [CrossRef]
  8. L. Xiao, W. Jin, and M. S. Demokan, "Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges," Opt. Lett. 32, 115-117 (2007).
    [CrossRef]
  9. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, "Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect," J. Lightwave Technol. 25, 3563-3574 (2007).
    [CrossRef]
  10. B. Bourliaguet, C. Paré, F. �?mond, A. Croteau, A. Proulx, and R. Vallée, "Microstructured fiber splicing," Opt. Express 11, 3412-3417 (2003).
    [PubMed]
  11. J. H. Chong, M. K. Rao, Y. Zhu, and P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
    [CrossRef]
  12. A. D. Yablon and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
    [CrossRef]
  13. R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, "Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells," Opt. Express 14, 9576-9583 (2006).
    [CrossRef] [PubMed]

2008

2007

2006

2005

A. D. Yablon and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
[CrossRef]

2004

2003

J. H. Chong, M. K. Rao, Y. Zhu, and P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

B. Bourliaguet, C. Paré, F. �?mond, A. Croteau, A. Proulx, and R. Vallée, "Microstructured fiber splicing," Opt. Express 11, 3412-3417 (2003).
[PubMed]

1999

1996

??mond, F.

Argyros, A.

Atkin, D. M.

Barton, G.

Bennett, P. J.

Biancalana, F.

Birks, T. A.

Bise, R. T.

A. D. Yablon and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
[CrossRef]

Bourliaguet, B.

Chong, J. H.

J. H. Chong, M. K. Rao, Y. Zhu, and P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

Corwin, K. L.

Croteau, A.

Demokan, M. S.

Efimov, A.

Henry, G.

Ho, H. L.

Issa, N. A.

Jin, W.

Joly, N. Y.

Ju, J.

Knabe, K.

Knight, J. C.

Large, M. C. J.

Monro, T. M.

Omenetto, F. G.

Paré, C.

Poladian, L.

Proulx, A.

Rao, M. K.

J. H. Chong, M. K. Rao, Y. Zhu, and P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

Richardson, D. J.

Russell, P. S.

Russell, P. S. J.

Shum, P.

J. H. Chong, M. K. Rao, Y. Zhu, and P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

Skryabin, D. V.

Taylor, A. J.

Thapa, R.

Vallée, R.

van Eijkelenborg, M. A.

Wang, D.

Wang, D. N.

Y. Wang, L. Xiao, D. N. Wang, and W. Jin, "In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber," Opt. Letters 32, 1035-1037 (2007).
[CrossRef]

Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, "Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity," Opt. Lett. 31, 3414-3416 (2006).
[CrossRef] [PubMed]

Wang, Y.

Wang, Y. P.

Washburn, B. R.

Xiao, L.

Xiao, L. M.

Xuan, H.

Yablon, A. D.

A. D. Yablon and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
[CrossRef]

Yulin, A. V.

Zagari, J.

Zhao, C.-L.

Zhu, Y.

J. H. Chong, M. K. Rao, Y. Zhu, and P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

J. H. Chong, M. K. Rao, Y. Zhu, and P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

A. D. Yablon and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Opt. Letters

Y. Wang, L. Xiao, D. N. Wang, and W. Jin, "In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber," Opt. Letters 32, 1035-1037 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Cross section images of (a) PCF-252b5, (b) PCF-282b5, and (c) far field at 1290nm

Fig. 2.
Fig. 2.

Images of the splice joints during the splicing of a PCF and an SMF, as viewed from the screen of the splicer

Fig. 3.
Fig. 3.

Measured minimum splice loss for each splicing sample for the PCF and (a) SMF-1, (b) SMF-2, and (c) SMF-3 when light is transmitted ■ from the SMF to the PCF or oe-16-10-7258-i001 from the PCF to the SMF

Fig. 4.
Fig. 4.

Splicing a PCF with a poor end face to a standard SMF, achieving a splice loss of 1.2 dB

Tables (2)

Tables Icon

Table 1. Fiber parameters

Tables Icon

Table 2. Measured splice losses of 10 samples from SMF-1 to PCF and of another 10 samples from PCF to SMF-1, after butt-coupling and repeated arc discharges

Metrics