Abstract

As a visualizing and quantitative method, Fluorescence Molecular Tomography (FMT) has many potential applications in biomedical field and its three-dimensional (3D) implementation is needed in both theory and practice. In this paper, we propose a 3D scheme for time-domain FMT within the normalized Born-ratio formulation. A finite element method solution to the Laplace transformed time-domain coupled diffusion equations is employed as the forward model, and the resultant linear inversions at two distinct transform-factors are solved with an algebraic reconstruction technique to separate fluorescent yield and lifetime images. The algorithm is validated using simulated data for 3D cylinder phantoms, and the spatial resolution and quantitativeness of the reconstruction assessed. We demonstrate that the proposed approach can accurately retrieve the positions and shapes of the targets with high spatial resolution and quantitative accuracy, and tolerate a signal-to-noise ratio down to 25dB by appropriately choosing the transform factors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, C-H Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
    [CrossRef] [PubMed]
  3. Achilefu, R. Dorshow, J. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
    [CrossRef] [PubMed]
  4. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
    [CrossRef] [PubMed]
  5. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
    [CrossRef]
  6. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
    [CrossRef] [PubMed]
  7. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulation," Appl. Opt. 37, 5337-5343 (1998).
    [CrossRef]
  8. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
    [CrossRef] [PubMed]
  9. A. X. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005).
    [CrossRef] [PubMed]
  10. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Pans. 99, -9624 (2002)
    [CrossRef]
  11. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
    [CrossRef] [PubMed]
  12. B. Yuan and Q. Zhu, "Separately reconstructing the structural and functional parameters of a fluorescent inclusion embedded in a turbid medium," Opt. Express 14, 7172-7187 (2006).
    [CrossRef]
  13. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004).
    [CrossRef]
  14. A. Soubret and Vasillis Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006).
    [CrossRef] [PubMed]
  15. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescent-lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005).
    [CrossRef]
  16. F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomogrphy," Opt. Express 14, 7109-7124 (2006).
    [CrossRef] [PubMed]
  17. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, A. Sardini, and P. M. W. French, and S. R. Arridge "Fluorescence lifetime tomography by using time-gated data acquisition," Appl. Opt. 46, 7384-7391(2007).
    [CrossRef] [PubMed]
  18. S. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005).
    [CrossRef] [PubMed]
  19. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
    [CrossRef] [PubMed]
  20. H. J. Zhao. Zhao, F . Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
    [CrossRef]
  21. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
    [CrossRef]
  22. F. Gao, Y. Tanikawa, H. J. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
    [CrossRef] [PubMed]
  23. V. Y. Soloviev, J. McGinty, K. B. Tahir, M. A. A. Neil, A. Sardini, J. V. Hajnal, S. R. Arridge, and P. M. W. French, "Fluorescence lifetime tomography of live cells expressing enhanced green fluorescent protein embedded in a scattering medium exhibiting background autofluorescence," Opt. Lett. 32, 2034-2036 (2007).
    [CrossRef] [PubMed]
  24. J. Wu, "Convolution picture of the boundary conditions in photon migration and its implications in time-resolved optical imaging of biological tissues," J. Opt. Soc. Am. A 14, 280-287 (1997).
    [CrossRef]
  25. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
    [CrossRef] [PubMed]
  26. A. C. Kak and M. Slaney, Principle of Computerized Tomography Imaging (IEEE Press, New York, 1988).
  27. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, "Fluorescence tomography imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA. 94, 8783-8788 (1997).
    [CrossRef] [PubMed]
  28. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "IN vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950(1999).
    [CrossRef]
  29. J. H. Lee, A. Joshi, and E. M. Sevick-Muraca, "Full adaptive finite element based tomography using tetrahedral dual-meshing for fluorescence enhanced optical imaging in tissue," Opt. Express 15, 6955-6975 (2007).
    [CrossRef] [PubMed]
  30. D. Wang, X. Song, and J. Bai, "Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution," Opt. Express 15, 9722-9730 (2007).
    [CrossRef] [PubMed]
  31. S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, "Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization," Opt. Express 15, 4066-4082 (2007).
    [CrossRef] [PubMed]

2007 (5)

2006 (3)

2005 (6)

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

H. J. Zhao. Zhao, F . Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

H. J. Zhao. Zhao, F . Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

S. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005).
[CrossRef] [PubMed]

A. X. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005).
[CrossRef] [PubMed]

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescent-lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005).
[CrossRef]

2004 (2)

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

2003 (2)

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
[CrossRef] [PubMed]

2002 (6)

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

V. Ntziachristos, C-H Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Pans. 99, -9624 (2002)
[CrossRef]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, Y. Tanikawa, H. J. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
[CrossRef] [PubMed]

2000 (1)

Achilefu, R. Dorshow, J. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

1999 (2)

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "IN vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950(1999).
[CrossRef]

1998 (1)

1997 (2)

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, "Fluorescence tomography imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA. 94, 8783-8788 (1997).
[CrossRef] [PubMed]

J. Wu, "Convolution picture of the boundary conditions in photon migration and its implications in time-resolved optical imaging of biological tissues," J. Opt. Soc. Am. A 14, 280-287 (1997).
[CrossRef]

Achilefu,

Achilefu, R. Dorshow, J. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

Arridge, S. R.

Bacskai, B. J.

Bai, J.

Bevilacqua, F.

Boas, D. A.

Bogdanov, A.

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Bouman, C. A.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C-H Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Bugaj, J.

Achilefu, R. Dorshow, J. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

Cherry, S. R.

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

Cong, A. X.

Dasari, R. R.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, "Fluorescence tomography imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA. 94, 8783-8788 (1997).
[CrossRef] [PubMed]

Davis, S. C.

Dehghani, H.

S. C. Davis, H. Dehghani, J. Wang, S. D. Jiang, B. W. Pogue, and K. D. Paulsen, "Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization," Opt. Express 15, 4066-4082 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Delpy, D. T.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Depeursinge, C.

Dorshow, R.

Achilefu, R. Dorshow, J. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

Dunn, A. K.

Elson, D. S.

Eppstein, M. J.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Pans. 99, -9624 (2002)
[CrossRef]

Feld, M. S.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, "Fluorescence tomography imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA. 94, 8783-8788 (1997).
[CrossRef] [PubMed]

French, P. M. W.

Gambhir, S. S.

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

Gao, F

H. J. Zhao. Zhao, F . Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

Gao, F.

Godavarty, A.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Pans. 99, -9624 (2002)
[CrossRef]

Graves, E. E.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Gross, J. D.

Hajnal, J. V.

Hawrysz, D. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Pans. 99, -9624 (2002)
[CrossRef]

Hebden, J. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Homma, K.

H. J. Zhao. Zhao, F . Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

Intes, X.

Jiang, H.

Jiang, S. D.

Joshi, A.

Kumar, A. T. N.

Lam, S.

Lee, J. H.

Lesage, F.

Mahmood, U.

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Marquet, P.

Massoud, T.F.

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

McGinty, J.

Millane, R. P.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
[CrossRef] [PubMed]

Milstein, A. B.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
[CrossRef] [PubMed]

Neil, M. A. A.

Ntziachristos, V.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C-H Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Ntziachristos, Vasillis

A. Soubret and Vasillis Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006).
[CrossRef] [PubMed]

Oh, S.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
[CrossRef] [PubMed]

Paulsen, K. D.

Perelman, L.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, "Fluorescence tomography imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA. 94, 8783-8788 (1997).
[CrossRef] [PubMed]

Piguet, D.

Pogue, B. W.

Rajapopalan, R.

Achilefu, R. Dorshow, J. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Sardini, A.

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Sevick-Muraca, E. M.

J. H. Lee, A. Joshi, and E. M. Sevick-Muraca, "Full adaptive finite element based tomography using tetrahedral dual-meshing for fluorescence enhanced optical imaging in tissue," Opt. Express 15, 6955-6975 (2007).
[CrossRef] [PubMed]

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Pans. 99, -9624 (2002)
[CrossRef]

Skoch, J.

Soloviev, V. Y.

Song, X.

Soubret, A.

A. Soubret and Vasillis Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

Stott, J. J.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

Tahir, K. B.

Tanikawa, Y.

Tromberg, B. J.

Tung, C. H.

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Tung, C-H

V. Ntziachristos, C-H Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

Wang, D.

Wang, G.

Wang, J.

Webb, K. J.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, C-H Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Wu, J.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, "Fluorescence tomography imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA. 94, 8783-8788 (1997).
[CrossRef] [PubMed]

J. Wu, "Convolution picture of the boundary conditions in photon migration and its implications in time-resolved optical imaging of biological tissues," J. Opt. Soc. Am. A 14, 280-287 (1997).
[CrossRef]

Yamada, Y.

Yuan, B.

Zhang, Q.

Zhao, H.

Zhao, H. J.

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomogrphy," Opt. Express 14, 7109-7124 (2006).
[CrossRef] [PubMed]

H. J. Zhao. Zhao, F . Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

H. J. Zhao. Zhao, F . Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, Y. Tanikawa, H. J. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
[CrossRef] [PubMed]

Zhu, Q.

Appl. Opt. (7)

H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulation," Appl. Opt. 37, 5337-5343 (1998).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
[CrossRef] [PubMed]

V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, A. Sardini, and P. M. W. French, and S. R. Arridge "Fluorescence lifetime tomography by using time-gated data acquisition," Appl. Opt. 46, 7384-7391(2007).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

H. J. Zhao. Zhao, F . Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, Y. Tanikawa, H. J. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "IN vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950(1999).
[CrossRef]

Genes Dev. (1)

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

Invest. Radiol. (1)

Achilefu, R. Dorshow, J. Bugaj, and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

Mol. Imaging (1)

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002).
[CrossRef]

Nat. Biotechnol. (1)

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C-H Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Opt. Soc. Am. A (1)

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

Pans. (1)

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Pans. 99, -9624 (2002)
[CrossRef]

Phys. Med. Biol. (3)

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

A. Soubret and Vasillis Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. USA. (1)

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, "Fluorescence tomography imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA. 94, 8783-8788 (1997).
[CrossRef] [PubMed]

Other (1)

A. C. Kak and M. Slaney, Principle of Computerized Tomography Imaging (IEEE Press, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

phantom1 (left) and phantom2 (right)

Fig. 2.
Fig. 2.

Original (I) and reconstructed (II) images of different fluorescent yield and lifetime for target 1 and target 2 at Z=22mm.

Fig. 3.
Fig. 3.

(a) Original (top) and reconstructed (bottom) images of fluorescent yield and lifetime with the contrast of 3:1 for target 1 and target 2 at Z=22mm, (b) original (blue) and reconstructed (red) profiles along X-axis for 3:1 contrast, and (c) the quantitativeness ratio of reconstructed yield (dot line) and lifetime (square line) as a function of the target contrast.

Fig. 4.
Fig. 4.

(a) The reconstructed yield and lifetime images for CCS=10mm (I) and 8mm (II) at Z=2mm, and (b) profiles of reconstructed images along the X-axis for a variety CCS of 12mm (blue), 10mm (red), 8mm (green) and 6mm (black).

Fig. 5.
Fig. 5.

(a) The reconstructed images of fluorescent yield and lifetime on the different cross sections at Z=24mm (I), Z=23mm (II) and Z=22mm (III) respectively, and (b) their images for longitudinal section at Y=0mm(center).

Fig. 6.
Fig. 6.

(a) The reconstructed images of fluorescent yield and lifetime at Z=22mm with the SNR of 35dB (top), 25dB (bottom) and a pair of transform-factors ∓0.5βL , and (b) the reconstructed images at Z=22mm with SNR of 35dB (top), 25dB (bottom) and a pair of transform-factors ∓βL

Tables (1)

Tables Icon

Table 1. Original and reconstructed centers of Target 2 and 3

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ [ · κ x ( r ) + μ ax ( r ) c + t ] Φ x ( r , r s , t ) = S x ( r , r s , t ) [ · κ m ( r ) + μ am ( r ) c + t ] Φ m ( r , r s , t ) = S m ( r , r s , t )
{ [ · κ x ( r ) + ( μ ax ( r ) c + β ) ] Φ x ( r , r s , β ) = δ ( r r s ) [ · κ m ( r ) + ( μ am ( r ) c + β ) ] Φ m ( r , r s , β ) = c Φ x ( r , r s , β ) η μ af ( r ) [ 1 + β τ ( r ) ]
I nb ( r d , r s , β ) = I m ( r d , r s , β ) I x ( r d , r s , β ) = 1 I x ( r d , r s , β ) × Ω c G m ( r d , r , β ) Φ x ( r , r s , β ) x ( r , β ) d Ω
I nb ( β ) 1 I x ( r d , r s , β ) e = 1 E V e c G m ( r d , r , β ) Φ x ( r , r s , β ) x ( r , β ) d V e
1 I x ( r d , r s , β ) e = 1 E c G ¯ m ( r d , r , β ) Φ ¯ x ( r , r s , β ) x ¯ ( r , β ) V e
I nb ( β ) = w ( β ) x ( β )
W ij ( r d i , r s j , β , n ) = 1 I x ( r d i , r s j , β ) V e G ¯ m ( V e ) ( r d i , β ) Φ ¯ x ( V e ) ( r s j , β ) V e u n ( r ) d V e
{ η μ af ( r ) = ( β 1 β 2 ) x ( r , β 1 ) x ( r , β 2 ) [ β 1 x ( r , β 1 ) β 2 x ( r , β 2 ) ] τ ( r ) = [ x ( r , β 1 ) x ( r , β 2 ) ] [ β 1 x ( r , β 1 ) β 2 x ( r , β 2 ) ]

Metrics