Abstract

A new optically pumped waveguide amplifier with ultra-large mode area is proposed. This amplifier is based on gain guiding in a transverse grating waveguide in which the pump is confined by the photonic bandgap while the signal is guided by optical gain. Characteristics of the propagating modes of the waveguide amplifier are analyzed theoretically using the transfer matrix method, indicating robust single-transverse-mode operation with large modal gain.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Lang, K. Dzurk, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, "Theory of grating-confined broad-area lasers," IEEE J. Quantum. Electron. 34, 2196-2210 (1998).
    [CrossRef]
  2. A. Yariv, Y. Xu, and S. Mookherjea, "Transverse Bragg resonance laser amplifier," Opt. Lett. 28, 176-178 (2003).
    [CrossRef] [PubMed]
  3. W. Liang, Y. Xu, J. M. Choi, and A. Yariv, "Engineering transverse Bragg resonance waveguides for large modal volume lasers," Opt. Lett. 28, 2079-2081 (2003).
    [CrossRef] [PubMed]
  4. A. E. Siegman, "Propagating modes in gain-guided optical fibers," J. Opt. Soc. Am. A. 20, 1617-1628 (2003).
    [CrossRef]
  5. A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
    [CrossRef]
  6. Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, "Very large-core, single-mode, gain-guided, index-antiguided fiber lasers," Opt. Lett. 32, 2505-2507 (2007).
    [CrossRef] [PubMed]
  7. V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
    [CrossRef]
  8. A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley & Sons, 2003).
  9. P. Yeh and A. Yariv, "Bragg reflecting waveguides," Opt. Commun. 19, 427-430 (1976).
    [CrossRef]
  10. A. E. Siegman, "Gain-guided, index-antiguided fiber lasers," J. Opt. Soc. Am. A 24, 1677-1682 (2007).
    [CrossRef]
  11. K. Liu and E. Y. B. Pun, "Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers," Opt. Commun. 273,413-420 (2007).
    [CrossRef]
  12. K. Liu and E. Y.B. Pun, "K+-Na+ ion-exchanged waveguides in Er3+-Yb3+ co-doped phosphate glasses using field-assisted annealing," Appl. Opt. 43,3179-3184 (2004).
    [CrossRef] [PubMed]
  13. D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, "Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass," Appl. Phys. Lett. 74, 789-791 (1999).
    [CrossRef]
  14. S. Pissadakis and C. Pappas, "Planar periodic structures fabricated in Er/Yb co-doped phosphate glass using multi-beam ultraviolet laser holography," Opt. Express 15, 4296-4303 (2007).
    [CrossRef] [PubMed]

2008 (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
[CrossRef]

2007 (4)

2006 (1)

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

2004 (1)

2003 (3)

1999 (1)

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, "Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass," Appl. Phys. Lett. 74, 789-791 (1999).
[CrossRef]

1998 (1)

R. J. Lang, K. Dzurk, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, "Theory of grating-confined broad-area lasers," IEEE J. Quantum. Electron. 34, 2196-2210 (1998).
[CrossRef]

1976 (1)

P. Yeh and A. Yariv, "Bragg reflecting waveguides," Opt. Commun. 19, 427-430 (1976).
[CrossRef]

Ballato, J.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
[CrossRef]

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Bass, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
[CrossRef]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, "Very large-core, single-mode, gain-guided, index-antiguided fiber lasers," Opt. Lett. 32, 2505-2507 (2007).
[CrossRef] [PubMed]

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Chen, Y.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
[CrossRef]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, "Very large-core, single-mode, gain-guided, index-antiguided fiber lasers," Opt. Lett. 32, 2505-2507 (2007).
[CrossRef] [PubMed]

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Choi, J. M.

Demars, S.

R. J. Lang, K. Dzurk, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, "Theory of grating-confined broad-area lasers," IEEE J. Quantum. Electron. 34, 2196-2210 (1998).
[CrossRef]

Dzurk, K.

R. J. Lang, K. Dzurk, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, "Theory of grating-confined broad-area lasers," IEEE J. Quantum. Electron. 34, 2196-2210 (1998).
[CrossRef]

Foy, P.

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Funk, D. S.

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, "Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass," Appl. Phys. Lett. 74, 789-791 (1999).
[CrossRef]

Hardy, A. A.

R. J. Lang, K. Dzurk, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, "Theory of grating-confined broad-area lasers," IEEE J. Quantum. Electron. 34, 2196-2210 (1998).
[CrossRef]

Hawkins, W.

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Hayden, J. S.

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, "Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass," Appl. Phys. Lett. 74, 789-791 (1999).
[CrossRef]

Lang, R. J.

R. J. Lang, K. Dzurk, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, "Theory of grating-confined broad-area lasers," IEEE J. Quantum. Electron. 34, 2196-2210 (1998).
[CrossRef]

Liang, W.

Liu, K.

K. Liu and E. Y. B. Pun, "Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers," Opt. Commun. 273,413-420 (2007).
[CrossRef]

K. Liu and E. Y.B. Pun, "K+-Na+ ion-exchanged waveguides in Er3+-Yb3+ co-doped phosphate glasses using field-assisted annealing," Appl. Opt. 43,3179-3184 (2004).
[CrossRef] [PubMed]

McComb, T.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
[CrossRef]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, "Very large-core, single-mode, gain-guided, index-antiguided fiber lasers," Opt. Lett. 32, 2505-2507 (2007).
[CrossRef] [PubMed]

Mookherjea, S.

Pappas, C.

Pissadakis, S.

Pun, E. Y. B.

K. Liu and E. Y. B. Pun, "Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers," Opt. Commun. 273,413-420 (2007).
[CrossRef]

Pun, E. Y.B.

Richardson, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
[CrossRef]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, "Very large-core, single-mode, gain-guided, index-antiguided fiber lasers," Opt. Lett. 32, 2505-2507 (2007).
[CrossRef] [PubMed]

Richardson, M.C.

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Sanford, N. A.

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, "Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass," Appl. Phys. Lett. 74, 789-791 (1999).
[CrossRef]

Schoenfelder, A.

R. J. Lang, K. Dzurk, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, "Theory of grating-confined broad-area lasers," IEEE J. Quantum. Electron. 34, 2196-2210 (1998).
[CrossRef]

Siegman, A. E.

A. E. Siegman, "Gain-guided, index-antiguided fiber lasers," J. Opt. Soc. Am. A 24, 1677-1682 (2007).
[CrossRef]

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

A. E. Siegman, "Propagating modes in gain-guided optical fibers," J. Opt. Soc. Am. A. 20, 1617-1628 (2003).
[CrossRef]

Siegman, A.E.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
[CrossRef]

Sudesh, V.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
[CrossRef]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, "Very large-core, single-mode, gain-guided, index-antiguided fiber lasers," Opt. Lett. 32, 2505-2507 (2007).
[CrossRef] [PubMed]

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Veasey, D. L.

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, "Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass," Appl. Phys. Lett. 74, 789-791 (1999).
[CrossRef]

Welch, D. F.

R. J. Lang, K. Dzurk, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, "Theory of grating-confined broad-area lasers," IEEE J. Quantum. Electron. 34, 2196-2210 (1998).
[CrossRef]

Xu, Y.

Yariv, A.

Yeh, P.

P. Yeh and A. Yariv, "Bragg reflecting waveguides," Opt. Commun. 19, 427-430 (1976).
[CrossRef]

App. Phys. Lett. (1)

A. E. Siegman, Y. Chen, V. Sudesh, M.C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, "Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber," App. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A.E. Siegman, "Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser," Appl. Phys. B 90, 369-372 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, "Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass," Appl. Phys. Lett. 74, 789-791 (1999).
[CrossRef]

IEEE J. Quantum. Electron. (1)

R. J. Lang, K. Dzurk, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, "Theory of grating-confined broad-area lasers," IEEE J. Quantum. Electron. 34, 2196-2210 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

A. E. Siegman, "Gain-guided, index-antiguided fiber lasers," J. Opt. Soc. Am. A 24, 1677-1682 (2007).
[CrossRef]

J. Opt. Soc. Am. A. (1)

A. E. Siegman, "Propagating modes in gain-guided optical fibers," J. Opt. Soc. Am. A. 20, 1617-1628 (2003).
[CrossRef]

Opt. Commun. (2)

P. Yeh and A. Yariv, "Bragg reflecting waveguides," Opt. Commun. 19, 427-430 (1976).
[CrossRef]

K. Liu and E. Y. B. Pun, "Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers," Opt. Commun. 273,413-420 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley & Sons, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of a one-dimensional gain-guided transverse grating waveguide. The pump (blue) is confined via Bragg resonance and the signal (red) is confined by gain guiding (GG). Dashed and solid lines indicate leaky and bound rays, respectively. Positive ni represents gain. See text for details. (Color online)

Fig. 2.
Fig. 2.

(a) Loci of the eigenmodes for a passive TGW and an IAG-slab waveguide at 980 nm, and for a passive TGW at 1.55 nm. (b) Field amplitudes of the gap mode for the TGW and the fundamental mode for the IAG waveguide as described in a at 980 nm. The inset shows the high-order-mode nature of the gap mode. (Color online)

Fig. 3.
Fig. 3.

(a) Modal gain as a function of the pump gain in the core for the fundamental mode (i=0) and the first two higher-order modes (i=1, 2). (b) Field amplitudes of the fundamental mode at various material gains g up to the gain-guiding threshold of the first HOM. The wavelength is 1.55 µm. (Color online)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E j ( y ) = a j E j ( y y j ) + a j + E j + ( y y j ) ,
E ( y ) = e ik y , E + ( y ) = e ik y ,
E ( y ) = ( e i σ y re i σ y ) e i S y , E + ( y ) = ( e i σ y re i σ y ) e i S y ,
( a j a j + ) = M j 1 ( 0 ) . ( Π i = 1 j 1 M i ( d i ) · M i 1 ( 0 ) ) · M 0 ( 0 ) · ( a 0 a 0 + ) ,
M ( y ) = ( e ik y e ik y ik e ik y ik e ik y )
M ( y ) = ( ( e i σ y re i σ y ) e i S y ( e i σ y re i σ y ) e i S y ( i ( σ + S ) e i σ y + ir ( σ S ) e i σ y ) e i S y ( ir ( σ S ) e i σ y i ( σ + S ) e i σ y ) e i S y ) .

Metrics