Abstract

Control of light polarization is a key technology in modern photonics including application to optical manipulation of quantum information. The requisite is to obtain large rotation in isotropic media with small loss. We report on extraordinary optical activity in a planar dielectric on-waveguide photonic crystal structure, which has no in-plane birefringence and shows polarization rotation of more than 25 degrees for transmitted light. We demonstrate that in the planar chiral photonic crystal, the coupling of the normally incident light wave with low-loss waveguide and Fabry-Pérot resonance modes results in a dramatic enhancement of the optical activity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
    [CrossRef]
  2. H. Altug, D. Englund, and J. Vu�?kovi�?, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
    [CrossRef]
  3. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  4. D. Mori, S. Kubo, H. Sasaki, and T. Baba, "Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler," Opt. Express 15, 5264-5270 (2007).
    [CrossRef] [PubMed]
  5. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006).
    [CrossRef] [PubMed]
  6. M. Thiel, G. von Freymann, and M. Wegener, "Layer-by-layer three-dimensional chiral photonic crystals," Opt. Lett. 32, 2547-2549 (2007).
    [CrossRef] [PubMed]
  7. M. Thiel, M. Hermatschweiler, M. Wegener, and G. von Freymann, "Thin-film polarizer based on a one-dimensional-three-dimensional-one-dimensional photonic crystal heterostructure," Appl. Phys. Lett. 91, 123515 (2007).
    [CrossRef]
  8. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef] [PubMed]
  9. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
    [CrossRef]
  10. M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
    [CrossRef] [PubMed]
  11. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express. 15, 9575-9583 (2007).
    [CrossRef] [PubMed]
  12. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A 76, 023811 (2007).
    [CrossRef]
  13. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  14. S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: selective suppression of excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
    [CrossRef] [PubMed]
  15. S. A. Maier, and H. A. Atwater, "Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  16. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Lett. 29, 1414-1416 (2004).
    [CrossRef] [PubMed]
  17. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy," Opt. Lett. 28, 713-715 (2003).
    [CrossRef] [PubMed]
  18. W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
    [CrossRef]
  19. W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with two-dimensional chirality," J. Opt. A, Pure Appl. Opt. 8, 878-890 (2006).
    [CrossRef]
  20. K. Sato, "Measurement of magneto-optical Kerr effect using Piezo-birefringent modulator," Jpn. J. Appl. Phys. 20, 2403-2409 (1981).
    [CrossRef]
  21. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
    [CrossRef]
  22. H. Kogelnik and V. Ramaswamy, "Scaling rules for Thin-Film Optical Waveguides," Appl. Opt. 13, 1857-1862 (1974).
    [CrossRef] [PubMed]
  23. B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
    [CrossRef]
  24. S. Kieckbusch, S. Ferber, H. Rosenfeldt, R. Ludwig, C. Boerner, A. Ehrhardt, E. Brinkmeyer, and H.-G. Weber, "Automatic PMD compensator in a 160-Gb/s OTDM transmission over deployed fiber using RZ-DPSK modulation format," J. Lightwave Technol. 23, 165-171 (2005).
    [CrossRef]
  25. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
    [CrossRef]

2007

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

M. Thiel, M. Hermatschweiler, M. Wegener, and G. von Freymann, "Thin-film polarizer based on a one-dimensional-three-dimensional-one-dimensional photonic crystal heterostructure," Appl. Phys. Lett. 91, 123515 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express. 15, 9575-9583 (2007).
[CrossRef] [PubMed]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A 76, 023811 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
[CrossRef] [PubMed]

D. Mori, S. Kubo, H. Sasaki, and T. Baba, "Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler," Opt. Express 15, 5264-5270 (2007).
[CrossRef] [PubMed]

M. Thiel, G. von Freymann, and M. Wegener, "Layer-by-layer three-dimensional chiral photonic crystals," Opt. Lett. 32, 2547-2549 (2007).
[CrossRef] [PubMed]

2006

H. Altug, D. Englund, and J. Vu�?kovi�?, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with two-dimensional chirality," J. Opt. A, Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006).
[CrossRef] [PubMed]

2005

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

S. A. Maier, and H. A. Atwater, "Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

S. Kieckbusch, S. Ferber, H. Rosenfeldt, R. Ludwig, C. Boerner, A. Ehrhardt, E. Brinkmeyer, and H.-G. Weber, "Automatic PMD compensator in a 160-Gb/s OTDM transmission over deployed fiber using RZ-DPSK modulation format," J. Lightwave Technol. 23, 165-171 (2005).
[CrossRef]

2004

2003

2002

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

2001

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: selective suppression of excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1981

K. Sato, "Measurement of magneto-optical Kerr effect using Piezo-birefringent modulator," Jpn. J. Appl. Phys. 20, 2403-2409 (1981).
[CrossRef]

1974

Altug, H.

H. Altug, D. Englund, and J. Vu�?kovi�?, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Anceau, C.

Asano, T.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Atwater, H. A.

S. A. Maier, and H. A. Atwater, "Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Baba, T.

Bagnall, D. M.

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with two-dimensional chirality," J. Opt. A, Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

Bai, B.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A 76, 023811 (2007).
[CrossRef]

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express. 15, 9575-9583 (2007).
[CrossRef] [PubMed]

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

Boerner, C.

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Brasselet, S.

Brinkmeyer, E.

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Decker, M.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Ehrhardt, A.

Elliott, J.

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Englund, D.

H. Altug, D. Englund, and J. Vu�?kovi�?, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Fedotov, V. A.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Ferber, S.

Fujita, M.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Gadenne, P.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Giessen, H.

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: selective suppression of excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Hermatschweiler, M.

M. Thiel, M. Hermatschweiler, M. Wegener, and G. von Freymann, "Thin-film polarizer based on a one-dimensional-three-dimensional-one-dimensional photonic crystal heterostructure," Appl. Phys. Lett. 91, 123515 (2007).
[CrossRef]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Kieckbusch, S.

Klein, M. W.

Kogelnik, H.

Konishi, K.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express. 15, 9575-9583 (2007).
[CrossRef] [PubMed]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kubo, S.

Kuhl, J.

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: selective suppression of excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Kuiper, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kunishi, W.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express. 15, 9575-9583 (2007).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, L.

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

Linden, S.

M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
[CrossRef] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: selective suppression of excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Ludwig, R.

Maier, S. A.

S. A. Maier, and H. A. Atwater, "Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Miyai, E.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006).
[CrossRef] [PubMed]

Mori, D.

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Noda, S.

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006).
[CrossRef] [PubMed]

Ohnishi, D.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006).
[CrossRef] [PubMed]

Okano, T.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006).
[CrossRef] [PubMed]

Papakostas, A.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Potts, A.

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with two-dimensional chirality," J. Opt. A, Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Ramaswamy, V.

Rosenfeldt, H.

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Sakai, K.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006).
[CrossRef] [PubMed]

Sasaki, H.

Sato, K.

K. Sato, "Measurement of magneto-optical Kerr effect using Piezo-birefringent modulator," Jpn. J. Appl. Phys. 20, 2403-2409 (1981).
[CrossRef]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Smolyaninov, I. I.

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Sugimoto, T.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express. 15, 9575-9583 (2007).
[CrossRef] [PubMed]

Svirko, Y.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express. 15, 9575-9583 (2007).
[CrossRef] [PubMed]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A 76, 023811 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Thiel, M.

M. Thiel, G. von Freymann, and M. Wegener, "Layer-by-layer three-dimensional chiral photonic crystals," Opt. Lett. 32, 2547-2549 (2007).
[CrossRef] [PubMed]

M. Thiel, M. Hermatschweiler, M. Wegener, and G. von Freymann, "Thin-film polarizer based on a one-dimensional-three-dimensional-one-dimensional photonic crystal heterostructure," Appl. Phys. Lett. 91, 123515 (2007).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Tikhodeev, S.G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Turunen, J.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A 76, 023811 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Vallius, T.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A 76, 023811 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

von Freymann, G.

M. Thiel, G. von Freymann, and M. Wegener, "Layer-by-layer three-dimensional chiral photonic crystals," Opt. Lett. 32, 2547-2549 (2007).
[CrossRef] [PubMed]

M. Thiel, M. Hermatschweiler, M. Wegener, and G. von Freymann, "Thin-film polarizer based on a one-dimensional-three-dimensional-one-dimensional photonic crystal heterostructure," Appl. Phys. Lett. 91, 123515 (2007).
[CrossRef]

Vu??kovi??, J.

H. Altug, D. Englund, and J. Vu�?kovi�?, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Weber, H.-G.

Wegener, M.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Zayats, A. V.

Zhang, W.

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with two-dimensional chirality," J. Opt. A, Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

Zheludev, N. I.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Lett. 29, 1414-1416 (2004).
[CrossRef] [PubMed]

Zyss, J.

Appl. Opt.

Appl. Phys. Lett.

M. Thiel, M. Hermatschweiler, M. Wegener, and G. von Freymann, "Thin-film polarizer based on a one-dimensional-three-dimensional-one-dimensional photonic crystal heterostructure," Appl. Phys. Lett. 91, 123515 (2007).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

J. Appl. Phys.

S. A. Maier, and H. A. Atwater, "Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with two-dimensional chirality," J. Opt. A, Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

K. Sato, "Measurement of magneto-optical Kerr effect using Piezo-birefringent modulator," Jpn. J. Appl. Phys. 20, 2403-2409 (1981).
[CrossRef]

Nat. Photonics

S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Nat. Phys.

H. Altug, D. Englund, and J. Vu�?kovi�?, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Nature

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express

Opt. Express.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express. 15, 9575-9583 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A 76, 023811 (2007).
[CrossRef]

Phys. Rev. B

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Phys. Rev. Lett.

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: selective suppression of excitation," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuiper, " Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Structure of the on-waveguide planar chiral photonic crystal. The polarization ellipse of the zeroth transmitted light is schematically shown. φ is the angle between the polarization azimuth of the incident wave and Y-axis of the square lattice. ψ is the incident angle for p-polarized light. Δ represents the polarization azimuth rotation angle. The thickness of the chiral pattern is t=410 nm, the waveguide layer thickness is h=820 nm, widths of the gammadion line and opening are w=120 nm, l=70 nm, and the period is 600 nm. The arrows besides φ and ψ indicate the direction of rotations. The layout of this figure describes the case of φ=0 and ψ=0. (b). SEM image of the on-waveguide planar chiral structure. The scale bar corresponds to 600 nm. (c). Polarization azimuth rotation Δ for normal incidence measured at 634nm. The measured polarization azimuth rotation Δ is fitted by an oscillating function of the incident polarization azimuth φ; Δ=θ+δθcos(φ+φ 0), where θ is chirality-induced rotation, δθθ describes birefringence due to imperfectness of the square pattern, φ 0 is a constant. (d). The dispersion curves of the TE guided modes obtained from Eq. (2).

Fig. 2.
Fig. 2.

Transmission (a), chirality-induced polarization azimuth rotation (b) and ellipticity (c) spectra for all-dielectric chiral photonic crystal. Red and blue lines refer to the results obtained with left- and right- twisted gammadions, respectively. The waveguide resonances with m 2 x +m 2 y =1,2,4 are indicated.

Fig. 3.
Fig. 3.

The incident angle dependences of transmittance (a) and chirality-induced azimuth polarization rotation (b) for p-polarized incident light. The waveguide resonances are allocated by showing (M,m 2 x +m 2 y ) in (a).

Fig. 4.
Fig. 4.

(a). Calculated transmission and chirality-induced polarization azimuth rotation spectra at normal incidence. Experimental data are also shown for comparison. The spectral positions of TE waveguide resonances at normal incidence are indicated by blue arrows. (b) Incident angle dependences of transmittance for p-polarized incident light. The black circles and black lines indicate the dip positions of waveguide-resonance because they are hardly seen due to large intensity variation caused by Fabry-Pérot interference. The waveguide resonances are allocated by showing (M,m 2 x +m 2 y ) (c) The incident angle dependence of chirality-induced azimuth polarization rotation for p-polarized incident light.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β = k + 2 π d ( m x x + m y y )
k 2 n f 2 β 2 l = tan 1 β 2 k 2 n c 2 k 2 n f 2 β 2 + tan 1 β 2 k 2 n s 2 k 2 n f 2 β 2 + π M

Metrics