Abstract

We present a metamaterial that acts as a strongly resonant absorber at terahertz frequencies. Our design consists of a bilayer unit cell which allows for maximization of the absorption through independent tuning of the electrical permittivity and magnetic permeability. An experimental absorptivity of 70% at 1.3 terahertz is demonstrated. We utilize only a single unit cell in the propagation direction, thus achieving an absorption coefficient α=2000 cm-1. These metamaterials are promising candidates as absorbing elements for thermally based THz imaging, due to their relatively low volume, low density, and narrow band response.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Williams, "Filling the THz gap - high power sources and applications," Rep. Prog. Phy. 69, 301-326 (2006).
    [CrossRef]
  2. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
    [CrossRef]
  3. X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677 (2002).
    [CrossRef] [PubMed]
  4. T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical Transactions of the Royal Society of London A 362, 265-377 (2004).
  5. F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003).
    [CrossRef]
  6. D. Zimdars, "Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging," Proc. SPIE 5070,108-116 (2003).
    [CrossRef]
  7. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
    [CrossRef]
  8. H.-B. Liu, Y. Chen, G. J. Bastiaans and X.-C. Zhang, "Detection and identification of explosive RDX by THz diffuse reflection spectroscopy," Opt. Express 11, 2549-2554 (2003).
  9. J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005).
    [CrossRef]
  10. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
    [CrossRef]
  11. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  12. H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
    [CrossRef] [PubMed]
  13. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  14. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "A composite medium with simultaneously negative permeability and permitivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  15. R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  16. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 86, 3996 (2000).
  17. J. B. Pendry, D. Schurig and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  18. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  19. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, "A perfect metamaterial absorber," Submitted to Phys. Rev. Lett.
    [PubMed]
  20. D. Schurig, J. J. Mock and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
    [CrossRef]
  21. D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2001).
    [CrossRef]
  22. G. Dolling, M. Wegener, C. M. Soukoulis and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
    [CrossRef]
  23. F. Cremer, P. B. W. Schwering, W. Jong, K. Scutte and A. N. Jong, "Infrared polarization measurements of targets and background marine environment," Proc. SPIE 4370, 169-179 (2001).
    [CrossRef]
  24. F. A. Sadjadi and C. L. Chun, "Automatic detection of small objects from infrared state-of-polarization," Opt. Lett. 28, 531-533 (2003).
    [CrossRef] [PubMed]
  25. T. White, N. Butler and R. Murphy, "An uncooled IR sensor with a digital focal plane array," IEEE Eng. Med. Biol. Mag. 17, 60-65 (1998).
    [CrossRef] [PubMed]
  26. J. Wauters, "Doped silicon creates new bolometer material," Laser Focus World 33, 145-149 (1997).
  27. M. Almasri, D. P. Butler and Z. Celik-Butler, "Self-supporting uncooled infrared bolometers with low thermal mass," J. Microelectromechanical Syst. 10, 469-476 (2001).
    [CrossRef]
  28. H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
    [CrossRef]
  29. L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
    [CrossRef]
  30. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).
  31. S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
    [CrossRef]
  32. A. W. M. Lee and Q. Hu, "Real-time, continuous-wave imaging by use of a microbolometer focal-plane array," Opt. Lett. 30, 2563-2565 (2005).
    [CrossRef] [PubMed]
  33. H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

2007

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

G. Dolling, M. Wegener, C. M. Soukoulis and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
[CrossRef]

2006

G. P. Williams, "Filling the THz gap - high power sources and applications," Rep. Prog. Phy. 69, 301-326 (2006).
[CrossRef]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

2005

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
[CrossRef]

J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005).
[CrossRef]

A. W. M. Lee and Q. Hu, "Real-time, continuous-wave imaging by use of a microbolometer focal-plane array," Opt. Lett. 30, 2563-2565 (2005).
[CrossRef] [PubMed]

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

2004

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical Transactions of the Royal Society of London A 362, 265-377 (2004).

2003

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003).
[CrossRef]

D. Zimdars, "Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging," Proc. SPIE 5070,108-116 (2003).
[CrossRef]

F. A. Sadjadi and C. L. Chun, "Automatic detection of small objects from infrared state-of-polarization," Opt. Lett. 28, 531-533 (2003).
[CrossRef] [PubMed]

H.-B. Liu, Y. Chen, G. J. Bastiaans and X.-C. Zhang, "Detection and identification of explosive RDX by THz diffuse reflection spectroscopy," Opt. Express 11, 2549-2554 (2003).

2002

X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677 (2002).
[CrossRef] [PubMed]

2001

D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

F. Cremer, P. B. W. Schwering, W. Jong, K. Scutte and A. N. Jong, "Infrared polarization measurements of targets and background marine environment," Proc. SPIE 4370, 169-179 (2001).
[CrossRef]

M. Almasri, D. P. Butler and Z. Celik-Butler, "Self-supporting uncooled infrared bolometers with low thermal mass," J. Microelectromechanical Syst. 10, 469-476 (2001).
[CrossRef]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 86, 3996 (2000).

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "A composite medium with simultaneously negative permeability and permitivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

1999

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
[CrossRef]

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).

1998

T. White, N. Butler and R. Murphy, "An uncooled IR sensor with a digital focal plane array," IEEE Eng. Med. Biol. Mag. 17, 60-65 (1998).
[CrossRef] [PubMed]

1997

J. Wauters, "Doped silicon creates new bolometer material," Laser Focus World 33, 145-149 (1997).

Almasri, M.

M. Almasri, D. P. Butler and Z. Celik-Butler, "Self-supporting uncooled infrared bolometers with low thermal mass," J. Microelectromechanical Syst. 10, 469-476 (2001).
[CrossRef]

Amato, G.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

Averitt, R. D.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005).
[CrossRef]

H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

Azad, A. K.

H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

Babikov, D.

J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005).
[CrossRef]

Baorino, L.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
[CrossRef]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003).
[CrossRef]

Barber, J.

J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005).
[CrossRef]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Bastiaans, G. J.

Benedetto, G.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Butler, D. P.

M. Almasri, D. P. Butler and Z. Celik-Butler, "Self-supporting uncooled infrared bolometers with low thermal mass," J. Microelectromechanical Syst. 10, 469-476 (2001).
[CrossRef]

Butler, N.

T. White, N. Butler and R. Murphy, "An uncooled IR sensor with a digital focal plane array," IEEE Eng. Med. Biol. Mag. 17, 60-65 (1998).
[CrossRef] [PubMed]

Celik-Butler, Z.

M. Almasri, D. P. Butler and Z. Celik-Butler, "Self-supporting uncooled infrared bolometers with low thermal mass," J. Microelectromechanical Syst. 10, 469-476 (2001).
[CrossRef]

Chen, H.-T.

H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

Chen, H-T

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Chen, Y.

Chun, C. L.

Cremer, F.

F. Cremer, P. B. W. Schwering, W. Jong, K. Scutte and A. N. Jong, "Infrared polarization measurements of targets and background marine environment," Proc. SPIE 4370, 169-179 (2001).
[CrossRef]

Crowe, T. W.

T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical Transactions of the Royal Society of London A 362, 265-377 (2004).

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Dittmar, A.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Dolling, G.

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Federici, J.

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003).
[CrossRef]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
[CrossRef]

Funk, D. J.

J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
[CrossRef]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003).
[CrossRef]

Globus, T.

T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical Transactions of the Royal Society of London A 362, 265-377 (2004).

Gossard, A. C.

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).

Hangyo, T.

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

Hesler, J. L.

T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical Transactions of the Royal Society of London A 362, 265-377 (2004).

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Hooks, D. E.

J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005).
[CrossRef]

Hu, Q.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
[CrossRef]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003).
[CrossRef]

Jong, A. N.

F. Cremer, P. B. W. Schwering, W. Jong, K. Scutte and A. N. Jong, "Infrared polarization measurements of targets and background marine environment," Proc. SPIE 4370, 169-179 (2001).
[CrossRef]

Jong, W.

F. Cremer, P. B. W. Schwering, W. Jong, K. Scutte and A. N. Jong, "Infrared polarization measurements of targets and background marine environment," Proc. SPIE 4370, 169-179 (2001).
[CrossRef]

Ju, S. B.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kim, S. G.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
[CrossRef]

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).

Lacquaniti, V.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, "A perfect metamaterial absorber," Submitted to Phys. Rev. Lett.
[PubMed]

Lee, A. W. M.

Lee, H. K.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
[CrossRef]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

Lee, W.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
[CrossRef]

Linden, S.

Liu, H.-B.

Lysenko, V.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Markos, P.

D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2001).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, "A perfect metamaterial absorber," Submitted to Phys. Rev. Lett.
[PubMed]

Monticone, E.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Morikawa, O.

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

Murphy, R.

T. White, N. Butler and R. Murphy, "An uncooled IR sensor with a digital focal plane array," IEEE Eng. Med. Biol. Mag. 17, 60-65 (1998).
[CrossRef] [PubMed]

Nagashima, T.

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "A composite medium with simultaneously negative permeability and permitivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nishizawa, S.

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

O???Hara, J. F.

H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

Oka, A.

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
[CrossRef]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003).
[CrossRef]

Padilla, W. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "A composite medium with simultaneously negative permeability and permitivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, "A perfect metamaterial absorber," Submitted to Phys. Rev. Lett.
[PubMed]

H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 86, 3996 (2000).

Rossi, A. M.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).

Sadjadi, F. A.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, "A perfect metamaterial absorber," Submitted to Phys. Rev. Lett.
[PubMed]

Sakai, K.

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
[CrossRef]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "A composite medium with simultaneously negative permeability and permitivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

J. B. Pendry, D. Schurig and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Schwering, P. B. W.

F. Cremer, P. B. W. Schwering, W. Jong, K. Scutte and A. N. Jong, "Infrared polarization measurements of targets and background marine environment," Proc. SPIE 4370, 169-179 (2001).
[CrossRef]

Scutte, K.

F. Cremer, P. B. W. Schwering, W. Jong, K. Scutte and A. N. Jong, "Infrared polarization measurements of targets and background marine environment," Proc. SPIE 4370, 169-179 (2001).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "A composite medium with simultaneously negative permeability and permitivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, "A perfect metamaterial absorber," Submitted to Phys. Rev. Lett.
[PubMed]

Soukoulis, C. M.

G. Dolling, M. Wegener, C. M. Soukoulis and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2001).
[CrossRef]

Spagnolo, R.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Steni, R.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Takeda, M. W.

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

Tanaka, K.

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

Taylor, A. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005).
[CrossRef]

H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

Tominaga, K.

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

Tonouchi, M.

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "A composite medium with simultaneously negative permeability and permitivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Wauters, J.

J. Wauters, "Doped silicon creates new bolometer material," Laser Focus World 33, 145-149 (1997).

Wegener, M.

White, T.

T. White, N. Butler and R. Murphy, "An uncooled IR sensor with a digital focal plane array," IEEE Eng. Med. Biol. Mag. 17, 60-65 (1998).
[CrossRef] [PubMed]

Williams, G. P.

G. P. Williams, "Filling the THz gap - high power sources and applications," Rep. Prog. Phy. 69, 301-326 (2006).
[CrossRef]

Wong, Y. J.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
[CrossRef]

Woolard, D. L.

T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical Transactions of the Royal Society of London A 362, 265-377 (2004).

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Yoon, E.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
[CrossRef]

Yoon, J. B.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
[CrossRef]

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Zhang, X.-C.

Zide, J. M. O.

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
[CrossRef]

D. Zimdars, "Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging," Proc. SPIE 5070,108-116 (2003).
[CrossRef]

Appl. Phys. Lett.

D. Schurig, J. J. Mock and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006).
[CrossRef]

Appl. Phys. Lett. B

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. Lett. B 68, 1085-1094 (1999).

IEEE Eng. Med. Biol. Mag.

T. White, N. Butler and R. Murphy, "An uncooled IR sensor with a digital focal plane array," IEEE Eng. Med. Biol. Mag. 17, 60-65 (1998).
[CrossRef] [PubMed]

IEEE Trans. Electron. Devices

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee and S. G. Kim, "A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Trans. Electron. Devices 46, 1489-1491 (1999).
[CrossRef]

J. Microelectromechanical Syst.

M. Almasri, D. P. Butler and Z. Celik-Butler, "Self-supporting uncooled infrared bolometers with low thermal mass," J. Microelectromechanical Syst. 10, 469-476 (2001).
[CrossRef]

J. Phys. Chem. A

J. Barber, D. E. Hooks, D. J. Funk and R. D. Averitt, A. J. Taylor and D. Babikov, "Temperature-dependent farinfrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," J. Phys. Chem. A 109, 3501-3505 (2005).
[CrossRef]

Laser Focus World

J. Wauters, "Doped silicon creates new bolometer material," Laser Focus World 33, 145-149 (1997).

Microelectron. J.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko and A. Dittmar, "Design and fabrication of metal bolometers on high porosity silicon layers," Microelectron. J. 30, 1149-1154 (1999).
[CrossRef]

Nat. Photonics

H.-T. Chen, J. F. O�??Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental Demonstration of Frequency Agile Terahertz Metamaterials," Nat. Photonics, in press.

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
[CrossRef]

Nature

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Philosophical Transactions of the Royal Society of London A

T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical Transactions of the Royal Society of London A 362, 265-377 (2004).

Phys. Med. Biol.

X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677 (2002).
[CrossRef] [PubMed]

Phys. Rev. B

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2001).
[CrossRef]

Phys. Rev. Lett.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "A composite medium with simultaneously negative permeability and permitivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 86, 3996 (2000).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, "A perfect metamaterial absorber," Submitted to Phys. Rev. Lett.
[PubMed]

Proc. SPIE

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici and D. Gary, "Neural network analysis of terahertz spectra of explosives and bio-agents," Proc. SPIE 5070, 60-70 (2003).
[CrossRef]

D. Zimdars, "Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging," Proc. SPIE 5070,108-116 (2003).
[CrossRef]

F. Cremer, P. B. W. Schwering, W. Jong, K. Scutte and A. N. Jong, "Infrared polarization measurements of targets and background marine environment," Proc. SPIE 4370, 169-179 (2001).
[CrossRef]

Rep. Prog. Phy.

G. P. Williams, "Filling the THz gap - high power sources and applications," Rep. Prog. Phy. 69, 301-326 (2006).
[CrossRef]

Science

J. B. Pendry, D. Schurig and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons, and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005).
[CrossRef]

Terahertz Optoelectronics

S. Nishizawa and K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka and O. Morikawa, "Terahertz time-domain spectroscopy," Terahertz Optoelectronics 97, 203-269 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(color) Schematics of the THz absorber: (a) electric resonator on the top of a polyimide spacer; (b) cut wire on GaAs wafer; (c) single unit cell showing the direction of propagation of incident EM wave. The unit cell is 34 µm wide and 50 µm in length. The line width and gap of the electric resonator is 3 µm. The side length of the square electric resonator is 30 µm, the side length of the cut wire is 48 µm, and the width of the cut wire is 4 µm. Thickness of the electric resonant ring and cut wire is 200 nm. The spacer of polyimide is 8 µm thick, and the GaAs wafer is 500 µm thick.

Fig. 2.
Fig. 2.

(color) Simulation results for the electric resonator ring and cut wire. (a) and (b) show the x-component of the electric field of the electric resonator ring and cut wire at resonance, respectively; (c) and (d) show the anti-parallel currents driven by magnetic coupling. (e) The absorptivity (blue) yields a value of 98% at 1.12 THz. Reflection (green) and Transmission (red) are both at normal incidence.

Fig. 3.
Fig. 3.

(color) Left panel describes the development process for fabrication of the terahertz absorber. Right panel shows photographs of the split wire (top) electric ring resonator and split wire (middle) and an individual unit cell of the terahertz absorber (bottom).

Fig. 4.
Fig. 4.

(color) Experimental results showing the transmission intensity and reflection intensity. The blue lines are experiment and the red line the simulations. The reflectance measurement was performed at 30° off-normal. The transmission measurement was performed at normal incidence.

Fig. 5.
Fig. 5.

(color) Experimental results showing absorptivity. Experimental results are in blue and simulation is in red. The experimental absorptivity reaches a maximum value of 70% at 1.3 THz. The simulated absorptivity reaches a value of 68% at the same frequency.

Fig. 6.
Fig. 6.

(color) Simulation results comparing absorptivity for both polarizations. When the electric field is polarized parallel to the center stalk of the ERR (red) absorption reaches 70%. In the opposite polarization, the absorption only reaches 27%

Metrics