Abstract

We present an experimental method for direct analysis of guided-mode resonances in photonic crystal slab structures using transmission measurements. By positioning the photonic crystal slab between orthogonally oriented polarization filters light transmission is suppressed except for the guided-mode resonances. Angle resolved transmission measurements with crossed polarizers are performed to obtain the band structure around the Γ-point. Results are compared to mode simulations. Spatially resolved measurements in a confocal microscope setup are used for homogeneity characterizations. Stitching errors and inhomogeneities in exposure dose down to 1.3% in photonic crystal slabs fabricated by electron beam lithography are observed using this method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [Crossref]
  2. S. Fan and J. D. Jannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [Crossref]
  3. S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
    [Crossref]
  4. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
    [Crossref]
  5. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
    [Crossref]
  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phs. Rev.Lett. 78, 3294–3297 (1997).
    [Crossref]
  7. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
    [Crossref]
  8. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
    [Crossref] [PubMed]
  9. V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
    [Crossref]
  10. V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
    [Crossref]
  11. M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
    [Crossref]
  12. K. B. Crozier, V. Lousee, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
    [Crossref]
  13. M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
    [Crossref] [PubMed]
  14. A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
    [Crossref]
  15. Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
    [Crossref]
  16. M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
    [Crossref]
  17. G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001).
    [Crossref]
  18. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67, 165107 (2003).
    [Crossref]
  19. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
    [Crossref]
  20. R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
    [Crossref]
  21. G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
    [Crossref]
  22. M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
    [Crossref] [PubMed]
  23. M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
    [Crossref]
  24. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
    [Crossref]

2006 (3)

K. B. Crozier, V. Lousee, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
[Crossref]

2005 (3)

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[Crossref]

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

2004 (2)

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
[Crossref] [PubMed]

2003 (3)

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67, 165107 (2003).
[Crossref]

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

2002 (2)

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

S. Fan and J. D. Jannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

2001 (2)

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001).
[Crossref]

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
[Crossref] [PubMed]

2000 (4)

V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[Crossref]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[Crossref]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

1999 (2)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

1998 (1)

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

1997 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phs. Rev.Lett. 78, 3294–3297 (1997).
[Crossref]

1973 (1)

S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
[Crossref]

Agio, M.

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Andreani, L. C.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
[Crossref]

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Andrew, P.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67, 165107 (2003).
[Crossref]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001).
[Crossref]

Astratov, V. N.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

Augustin, M.

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Baechtold, W.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

Bajoni, D.

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Barnes, W. L.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67, 165107 (2003).
[Crossref]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001).
[Crossref]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Baumberg, J. J.

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
[Crossref] [PubMed]

Belotti, M.

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Bornemann, R.

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

Boschert, R.

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

Brand, S.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

Bristow, A. D.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

Busch, K.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Caimi, D.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

Charlton, M. B. D.

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
[Crossref] [PubMed]

Chen, Y.

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Crozier, K. B.

K. B. Crozier, V. Lousee, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Culshaw, I.

V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

Culshaw, I. S.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

De La Rue, R. M.

V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

Deutsch, M.

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[Crossref]

Diem, M.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Ding, Y.

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Erni, D.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

Etrich, C.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Fan, S.

K. B. Crozier, V. Lousee, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

S. Fan and J. D. Jannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phs. Rev.Lett. 78, 3294–3297 (1997).
[Crossref]

Feldmann, J.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[Crossref]

Fuchs, H.-J.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Galli, M.

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Garcia-Martin, A.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Gerace, D.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
[Crossref]

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Gerken, M.

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

Goesele, U.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Gombert, A.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[Crossref]

Guizzetti, G.

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Harbers, R.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

Harris, A.

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
[Crossref] [PubMed]

Iliew, R.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Jannopoulos, J. D.

S. Fan and J. D. Jannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phs. Rev.Lett. 78, 3294–3297 (1997).
[Crossref]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Jory, M. J.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001).
[Crossref]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Kallinger, C.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[Crossref]

Karimov, O. Z.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

Kilic, O.

K. B. Crozier, V. Lousee, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Kim, S.

K. B. Crozier, V. Lousee, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Kley, E.-B.

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Koch, W.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Krauss, T. F.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

Lederer, F.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Lemmer, U.

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[Crossref]

Lousee, V.

K. B. Crozier, V. Lousee, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Lupton, J. M.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Magnusson, R.

Mahrt, R. F.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

Matterson, B. J.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Meisel, D. C.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Miyai, E.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[Crossref]

Moll, N.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Netti, M. C.

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
[Crossref] [PubMed]

Noda, S.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[Crossref]

Nolte, S.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Norris, D. J.

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[Crossref]

Offrein, B. J.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

Ohnishi, D.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[Crossref]

Okano, T.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[Crossref]

Paleari, F.

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Parker, G. J.

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
[Crossref] [PubMed]

Patrini, M.

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Pereira, S.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Peschel, U.

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Peyrade, D.

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

Riechel, S.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[Crossref]

Sakaguchi, T.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[Crossref]

Sakai, K.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[Crossref]

Samuel, I. D. W.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67, 165107 (2003).
[Crossref]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001).
[Crossref]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

Schelle, D.

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Scherf, U.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[Crossref]

Schilling, J.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Schubert, E. F.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phs. Rev.Lett. 78, 3294–3297 (1997).
[Crossref]

Sheem, S.

S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
[Crossref]

Shimada, R.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

Skolnick, M. S.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Solgaard, O.

K. B. Crozier, V. Lousee, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Stevenson, R. M.

V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

Strasser, P.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

Tahraoui, A.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

Tünnermann, A.

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast,” Opt. Express 11, 3284–3289 (2003).
[Crossref] [PubMed]

Turnbull, G. A.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67, 165107 (2003).
[Crossref]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001).
[Crossref]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phs. Rev.Lett. 78, 3294–3297 (1997).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[Crossref]

von Freymann, G.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Wang, S.

S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
[Crossref]

Wegener, M.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Wehrspohn, R. B.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

Whittaker, D. M.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
[Crossref] [PubMed]

V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

Wittwer, V.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[Crossref]

Zoorob, M. E.

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
[Crossref] [PubMed]

Appl. Phys. Lett. (8)

S. Wang and S. Sheem, “Two-dimensional distributed-feedback lasers and their applications,” Appl. Phys. Lett. 22, 460–462 (1973).
[Crossref]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
[Crossref]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
[Crossref]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[Crossref]

V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[Crossref]

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Goesele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614–616 (2003).
[Crossref]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,” Appl. Phys. Lett. 84, 663–665 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 880–884 (2002).
[Crossref]

IEEE J. Sel. Areas Commun. (2)

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[Crossref]

M. Galli, D. Bajoni, M. Belotti, F. Paleari, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, “Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs,” IEEE J. Sel. Areas Commun. 23, 1402–1410 (2005).
[Crossref]

IEEE Proc. Optoelectron. (1)

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEEE Proc. Optoelectron. 145, 398–402 (1998).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, D. Erni, W. Baechtold, B. J. Offrein, and U. Scherf, “Enhanced feedback and experimental band mapping of organic photonic-crystal lasers,” J. Opt. A: Pure Appl. Opt. 8, 273–277 (2006).
[Crossref]

Opt. Express (2)

Phs. Rev.Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phs. Rev.Lett. 78, 3294–3297 (1997).
[Crossref]

Phys. Rev. B (6)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

S. Fan and J. D. Jannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

K. B. Crozier, V. Lousee, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122 (2001).
[Crossref]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67, 165107 (2003).
[Crossref]

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
[Crossref]

Phys. Rev. Lett. (1)

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Gerken, R. Boschert, R. Bornemann, U. Lemmer, D. Schelle, M. Augustin, E.-B. Kley, and A. Tünnermann, “Transmission measurements for the optical characterization of 2D-photonic crystals,” Proc. SPIE 5963, Optical Systems Design (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Confocal microscope setup for transmission measurements with orthogonally oriented polarization filters. The first and second polarization filter are referred to as polarizer and analyzer respectively. b) Schematic of photonic crystal orientation relative to polarizer and analyzer for normal incidence measurements. Arrows indicate electric field orientation. Azimuthal angle ϕ defines the fraction which couples to the photonic crystal slab (ϕ>0°, θ=0°). c) Schematic drawing of photonic crystal slab for oblique polar angle θ. d is the thickness of the photonic crystal slab, a is the period and 2r is the width (diameter) of the etched pattern in 1D (2D) structures (ϕ=0°, θ>0°).

Fig. 2.
Fig. 2.

Transmittivity and reflectivity measurements of a photonic crystal slab with hexagonal geometry of holes in a 150 nm Nb2O5 (n=2.3 for wavelength λ=500 nm) layer with a periodicity of a=300 nm. Black lines indicate measurements on structured and gray lines on unstructured regions (θ=0°). a) Polarizer and analyzer with parallel orientation. Superposition of guided-mode resonances and background. b) Transmittivity measurement with crossed polarization filters. Direct observation of guided-mode resonances. Inset: SEM image of hexagonal photonic crystal.

Fig. 3.
Fig. 3.

Transmission measurements with crossed polarization filters performed on 1D photonic crystal slab with a periodicity of a=350 nm, structured in a 130 nm ITO (n=1.87 for λ=500 nm) layer on a glass substrate. θ=0°, while ϕ is varied from 0° to 180°. a) Transmission spectra at three different angles ϕ. Inset: SEM image of 1D photonic crystal. b) Central mode intensity (530 nm–540 nm) versus angle ϕ. Maxima at ϕ=45° and ϕ=135°.

Fig. 4.
Fig. 4.

Angle resolved transmission measurements on a photonic crystal slab with hexagonal geometry in Γ - M direction. Polar angle θ is varied from 0° to 8° a) Transmission measurements under various angles. The intensity plot is normalized to the transmittivity without sample. b) Band structure calculation for the measured photonic crystal slab. Assuming a radius of r=85 nm the best fit to the measurements was observed.

Fig. 5.
Fig. 5.

Transmission measurements on a photonic crystal slab with hexagonal geometry (θ=0°). a) False color plot of red image channel using orthogonally oriented polarization filters. Dotted line indicates position of scan shown in Fig. 5(b). b) Spectrally and spatially resolved transmission measurements at normal incidence. 1.3% drift in photonic modes is observed.

Metrics