Abstract

To correct horizontal turbulences, a nematic liquid crystal wavefront corrector (NLC WFC) with a fast response is used. It can linearly modulate 2π radian at a wavelength of 633 nm. The closed-loop frequency of the adaptive optics system was originally only 12 Hz. Hence, a control system using the NLC WFC was developed, graphic processing units (GPUs) were used to compute the compensated wavefront, and the driving software for the NLC WFC was optimized. With these improvements, the closed loop frequency increased up to 60 Hz. Finally, the correction of a 500-m horizontal turbulence was performed with this fast adaptive system. After the correction, the averaged peak-to-valley (PV) and root-mean-square (RMS) values of the wavefront were reduced to 0.2λ and 0.06λ, respectively. The core of a fiber bundle is also resolved with a field angle of 0.68″. As the limit of the angular resolution of the telescope is 0.65″, the quasi-diffraction limited image is acquired with the closed-loop correction. It is shown that the NLC WFC has the ability to correct weak turbulences.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004).
    [CrossRef] [PubMed]
  2. G. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
    [CrossRef] [PubMed]
  3. F. Vargas-Martín and P Artal, "Phasor averaging for wavefront correction with liquid crystal spatial light modulators," Opt. Commun. 152, 233-238 (1998).
    [CrossRef]
  4. S. Serati and J. Stockley, "Advances in liquid crystal based devices for wavefront control and beamsteering," Proc. SPIE 5894, 58940K-1-58940K-13 (2005).
    [CrossRef]
  5. D. Dayton, J. Gonglewski, S. Restaino, and S. Browne, "MEMS adaptive optics for high resolution imaging of low Earth Orbit Satellites," Proc. SPIE 5490, 1514-1525 (2004).
    [CrossRef]
  6. N. Konforti, E. Marom, and S. T. Wu, "Phase-only modulation with twisted nematic liquid crystal spatial light modulators," Opt. Lett. 13, 251-253(1988).
    [CrossRef] [PubMed]
  7. Q. Mu, Z. Cao, L. Hu, D. Li and L. Xuan, "Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006).
    [CrossRef] [PubMed]
  8. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Liquid crystal based adaptive optics system to compensate both low and high order aberrations in model eye," Opt. Express 15, 1946-1953 (2007).
    [CrossRef] [PubMed]
  9. D. C. Burns, I. Underwood, J. Gourlay, A. O�??Hara, and D. G. Vass, "A 256�?256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
    [CrossRef]
  10. M. A. A. Neil, M. J. Booth, and T. Wilson, "Dynamic wave-front generation for the characterization and testing of optical systems," Opt. Lett. 23, 1849-1851 (1998).
    [CrossRef]
  11. S. R. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, "On the use of dual frequency nematic material for adaptive optics systems: first results of a closed -loop experiment," Opt. Express 6, 2-6 (2000).
    [CrossRef] [PubMed]
  12. D. Dayton, J. Gonglewski, and S. Restaino,  et al., "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites," Opt. Express 10, 1508-1519 (2002).
    [PubMed]
  13. D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
    [CrossRef]
  14. Z. Cao, L. Xuan, L. Hu, Y. Liu, Q. Mu, and D. Li, "Investigation of optical testing with a phase-only liquid crystal spatial light modulator," Opt. Express 13,1059-1065 (2005).
    [CrossRef] [PubMed]
  15. J. A. Jordan, Jr., P. M. Hirsch, L. B. Lesem, and D. L. Van Rooy, "Kinoform lenses," Appl. Opt. 9, 1883-1887 (1970).
  16. W. Chunhong, L. Mei, and L. Anna, "2900Hz High Speed Real Time Wavefront Processor," Opto-Electric Engineering Sup. 25,25-28 (1998) (In Chinese).
  17. R. G. Belleman, J. Be�?�dorf, and S. F. Portegies Zwart, "High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA," New Astron. 13, 103-112 (2008).
    [CrossRef]
  18. E. H. Wu, Y. Q. Liu, X. H. Liu, "An improved study of real-time fluid simulation on GPU," J. Computer Animation & Virtual World (CASA2004) 15, 139-146 (2004).
    [CrossRef]
  19. http://developer.nvidia.com/object/cuda.html

2008 (1)

R. G. Belleman, J. Be�?�dorf, and S. F. Portegies Zwart, "High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA," New Astron. 13, 103-112 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

2004 (3)

L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004).
[CrossRef] [PubMed]

D. Dayton, J. Gonglewski, S. Restaino, and S. Browne, "MEMS adaptive optics for high resolution imaging of low Earth Orbit Satellites," Proc. SPIE 5490, 1514-1525 (2004).
[CrossRef]

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

2002 (1)

2000 (1)

1998 (3)

F. Vargas-Martín and P Artal, "Phasor averaging for wavefront correction with liquid crystal spatial light modulators," Opt. Commun. 152, 233-238 (1998).
[CrossRef]

W. Chunhong, L. Mei, and L. Anna, "2900Hz High Speed Real Time Wavefront Processor," Opto-Electric Engineering Sup. 25,25-28 (1998) (In Chinese).

M. A. A. Neil, M. J. Booth, and T. Wilson, "Dynamic wave-front generation for the characterization and testing of optical systems," Opt. Lett. 23, 1849-1851 (1998).
[CrossRef]

1997 (1)

1995 (1)

D. C. Burns, I. Underwood, J. Gourlay, A. O�??Hara, and D. G. Vass, "A 256�?256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

1988 (1)

1970 (1)

Albanese, M.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

Anna, L.

W. Chunhong, L. Mei, and L. Anna, "2900Hz High Speed Real Time Wavefront Processor," Opto-Electric Engineering Sup. 25,25-28 (1998) (In Chinese).

Artal, P

F. Vargas-Martín and P Artal, "Phasor averaging for wavefront correction with liquid crystal spatial light modulators," Opt. Commun. 152, 233-238 (1998).
[CrossRef]

Baker, J.

Belleman, R. G.

R. G. Belleman, J. Be�?�dorf, and S. F. Portegies Zwart, "High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA," New Astron. 13, 103-112 (2008).
[CrossRef]

Booth, M. J.

Brackley, A.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

Browne, S.

Burns, D. C.

D. C. Burns, I. Underwood, J. Gourlay, A. O�??Hara, and D. G. Vass, "A 256�?256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Cao, Z.

Chunhong, W.

W. Chunhong, L. Mei, and L. Anna, "2900Hz High Speed Real Time Wavefront Processor," Opto-Electric Engineering Sup. 25,25-28 (1998) (In Chinese).

Dayton, D.

Gallegos, J.

Gonglewski, J.

Gourlay, J.

D. C. Burns, I. Underwood, J. Gourlay, A. O�??Hara, and D. G. Vass, "A 256�?256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Gu, D.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

Hirsch, P. M.

Hu, L.

Jordan, J. A.

Konforti, N.

Landers, F.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

Lesem, L. B.

Li, D.

Liu, Y.

Love, G.

Marom, E.

McDermott, S.

Mei, L.

W. Chunhong, L. Mei, and L. Anna, "2900Hz High Speed Real Time Wavefront Processor," Opto-Electric Engineering Sup. 25,25-28 (1998) (In Chinese).

Mu, Q.

Neil, M. A. A.

O???Hara, A.

D. C. Burns, I. Underwood, J. Gourlay, A. O�??Hara, and D. G. Vass, "A 256�?256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Restaino, S.

D. Dayton, J. Gonglewski, S. Restaino, and S. Browne, "MEMS adaptive optics for high resolution imaging of low Earth Orbit Satellites," Proc. SPIE 5490, 1514-1525 (2004).
[CrossRef]

D. Dayton, J. Gonglewski, and S. Restaino,  et al., "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites," Opt. Express 10, 1508-1519 (2002).
[PubMed]

Restaino, S. R.

Rogers, S.

Shilko, M.

Taber, D.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

Underwood, I.

D. C. Burns, I. Underwood, J. Gourlay, A. O�??Hara, and D. G. Vass, "A 256�?256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Van Rooy, D. L.

Vargas-Martín, F.

F. Vargas-Martín and P Artal, "Phasor averaging for wavefront correction with liquid crystal spatial light modulators," Opt. Commun. 152, 233-238 (1998).
[CrossRef]

Vass, D. G.

D. C. Burns, I. Underwood, J. Gourlay, A. O�??Hara, and D. G. Vass, "A 256�?256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Wen, B.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

Wilson, T.

Winker, B.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

Wirth, A.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

Wu, S. T.

Xuan, L.

Appl. Opt. (2)

New Astron. (1)

R. G. Belleman, J. Be�?�dorf, and S. F. Portegies Zwart, "High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA," New Astron. 13, 103-112 (2008).
[CrossRef]

Opt. Commun. (2)

F. Vargas-Martín and P Artal, "Phasor averaging for wavefront correction with liquid crystal spatial light modulators," Opt. Commun. 152, 233-238 (1998).
[CrossRef]

D. C. Burns, I. Underwood, J. Gourlay, A. O�??Hara, and D. G. Vass, "A 256�?256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator," Opt. Commun. 119, 623-632 (1995).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Opto-Electric Engineering Sup. (1)

W. Chunhong, L. Mei, and L. Anna, "2900Hz High Speed Real Time Wavefront Processor," Opto-Electric Engineering Sup. 25,25-28 (1998) (In Chinese).

Proc. SPIE (2)

D. Dayton, J. Gonglewski, S. Restaino, and S. Browne, "MEMS adaptive optics for high resolution imaging of low Earth Orbit Satellites," Proc. SPIE 5490, 1514-1525 (2004).
[CrossRef]

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, "Wavefront control with a spatial light modulator containing dual frequency liquid crystal," Proc. SPIE 5553, 68-82 (2004).
[CrossRef]

Other (3)

S. Serati and J. Stockley, "Advances in liquid crystal based devices for wavefront control and beamsteering," Proc. SPIE 5894, 58940K-1-58940K-13 (2005).
[CrossRef]

E. H. Wu, Y. Q. Liu, X. H. Liu, "An improved study of real-time fluid simulation on GPU," J. Computer Animation & Virtual World (CASA2004) 15, 139-146 (2004).
[CrossRef]

http://developer.nvidia.com/object/cuda.html

Supplementary Material (1)

» Media 1: MOV (2792 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Phase modulation as a function of grey level measured with ZYGO interferometer.

Fig. 2.
Fig. 2.

Optical setup for measurement of the response time.

Fig. 3.
Fig. 3.

Electrical-optical response of NLC WFC switching between 1.14V and 2V: the lower curve is the driving waveform; the upper is the electrical-optical response.

Fig. 4.
Fig. 4.

Block diagram of the time delay of the control system.

Fig. 5.
Fig. 5.

Programming model of CUDA architecture.

Fig. 6.
Fig. 6.

Optical layout of the simulated infinite object and the observation.

Fig. 7.
Fig. 7.

Optical setup of adaptive optics system: L1 to L5, lenses, TM and CF represent tip-tilt mirror and narrowband colored filter respectively, BS, beam splitter, M is the mirror.

Fig. 8.
Fig. 8.

Representative wavefront with fringe mode: (a) distorted; (b) corrected.

Fig. 9.
Fig. 9.

Images of the fiber bundle: (a) before correction; (b) after correction, the core of fiber bundle can be resolved in the red circle (2.72MB). [Media 1]

Metrics