Abstract

An 11.8km optical link is established to examine the intensity fluctuation of the laser beam transmission through atmosphere turbulence. Probability density function, fade statistic, and high-frequency spectrum are researched based on the analysis of the experimental data collected in each season of a year, including both weak and strong fluctuation cases. Finally, the daily variation curve of scintillation index is given, compared with the variation of refractive-index structure parameter C 2 n, which is calculated from the experimental data of angle of arrival. This work provides the experimental results that are helpful to the atmospheric propagation research and the free-space optical communication system design.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Fried, G. E. Mevers, and M. P. Keister, "Measurements of laser beam scintillation in the atmosphere," J. Opt. Soc. Am. 57, 787-797 (1967).
    [CrossRef]
  2. T. Chiba, "Spot dancing of the laser beam propagated through the turbulent atmosphere," Appl. Opt. 10, 2456-2461 (1971).
    [CrossRef] [PubMed]
  3. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, 1998).
  4. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, "Theory of optical scintillation," J. Opt. Soc. Am. 16, 1417-1429 (1974).
    [CrossRef]
  5. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, Bellingham, 2001).
    [CrossRef]
  6. Y. Han Oh, J. C. Ricklin, E. S. Oh, and F. D. Eaton, "Evaluating optical turbulence effects on free-space laser communication: modeling and measurements at ARL�??s A_LOT facility," Proc. SPIE 5550, 247-255 (2004).
    [CrossRef]
  7. A. Tunick, "Statistical analysis of optical turbulence intensity over a 2.33 km propagation path," Opt. Express 15, 3619-3628 (2007).
    [CrossRef] [PubMed]
  8. A. Tunick, "Statistical analysis of measured free-space laser signal intensity over a 2.33 km propagation path," Opt. Express 15, 14115-14122 (2007).
    [CrossRef] [PubMed]
  9. I. I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26-37 (2001).
    [CrossRef]
  10. Y. E. Yenicea, R. Li, M. Takabeb, and T. Arugab, "Atmospheric turbulence measurements through stellar observations," Proc. SPIE 3615, 316-324 (1999).
    [CrossRef]
  11. D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, "Optical wireless propagation theory vs. experiment," Proc. SPIE 4214, 38-45 (2001).
    [CrossRef]
  12. A. Al-habash, K. W. Fischer, C. S. Cornish, K. N. Desmet, and J. Nash, "Comparison between experimental and theoretical probability of fade for free space optical communications," Proc. SPIE 4873, 79-89 (2002).
    [CrossRef]
  13. W. Brown, B. Wallin, D. Lesniewski, D. Gooding, and J. Martin, "The experimental determination of on-off keying laser communications probability models and a comparison with theory," Proc. SPIE 6105, 61050U (2006).
    [CrossRef]
  14. M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
    [CrossRef] [PubMed]
  15. H. Yuksel and C. C. Davis, "Aperture averaging for studies of atmospheric turbulence and optimization of free space optical communication links" Proc. SPIE 5892, 58920P (2005).
    [CrossRef]
  16. M. S. Belen'kii, "Effect of the stratosphere on star image motion," Opt. Lett. 20, 1359-1361 (1995).
    [CrossRef] [PubMed]
  17. C. Rao, W. Jiang, and N. Ling, "Atmospheric parameters measurements for non-Kolmogorov turbulence with Shack-Hartmann wavefront sensor," Proc. SPIE 3763, 84-91 (2006).
    [CrossRef]
  18. R. R. Beland, "Some aspects of propagation through weak isotropic non-Kolmogorov turbulence," Proc. SPIE 2375, 6-16 (1995).
    [CrossRef]
  19. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 1554-1562 (2001).
    [CrossRef]
  20. R. Rao, S. Wang, X. Liu, and Z. Gong, "Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere," J. Opt. Soc. Am. A 16, 2755-2762 (1999).
    [CrossRef]
  21. R. Rao and Z. Gong, "High-frequency behavior of the temporal spectrum of laser beam propagating through turbulence," Proc. SPIE 4926, 175-180 (2002).
    [CrossRef]
  22. B. E. Stribling, B. M. Welsh, and M. C. Roggemann, "Optical propagation in non-Kolmogorov atmospheric turbulence," Proc. SPIE 2471, 181-196 (1995).
    [CrossRef]
  23. Y. Wang, C. Fan, X. Wu, J. Zhan, and Z. Gong, "Effects of non-uniform wind on the arrival angle temporal spectrum of spherical wave," Proc. SPIE 4125, 98-101 (2000).
    [CrossRef]
  24. E. Golbraikh and N. S. Kopeika, "Behavior of structure function of refraction coefficients in different turbulent fields," Appl. Opt. 43, 6151-6156 (2004).
    [CrossRef] [PubMed]
  25. W. B. Miller, J. C. Ricklin, and L. C. Andrews, "Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam," J. Opt. Soc. Am. A. 11, 2719-2726 (1994).
    [CrossRef]

2007

A. Tunick, "Statistical analysis of optical turbulence intensity over a 2.33 km propagation path," Opt. Express 15, 3619-3628 (2007).
[CrossRef] [PubMed]

A. Tunick, "Statistical analysis of measured free-space laser signal intensity over a 2.33 km propagation path," Opt. Express 15, 14115-14122 (2007).
[CrossRef] [PubMed]

2006

W. Brown, B. Wallin, D. Lesniewski, D. Gooding, and J. Martin, "The experimental determination of on-off keying laser communications probability models and a comparison with theory," Proc. SPIE 6105, 61050U (2006).
[CrossRef]

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

C. Rao, W. Jiang, and N. Ling, "Atmospheric parameters measurements for non-Kolmogorov turbulence with Shack-Hartmann wavefront sensor," Proc. SPIE 3763, 84-91 (2006).
[CrossRef]

2005

H. Yuksel and C. C. Davis, "Aperture averaging for studies of atmospheric turbulence and optimization of free space optical communication links" Proc. SPIE 5892, 58920P (2005).
[CrossRef]

2004

Y. Han Oh, J. C. Ricklin, E. S. Oh, and F. D. Eaton, "Evaluating optical turbulence effects on free-space laser communication: modeling and measurements at ARL�??s A_LOT facility," Proc. SPIE 5550, 247-255 (2004).
[CrossRef]

E. Golbraikh and N. S. Kopeika, "Behavior of structure function of refraction coefficients in different turbulent fields," Appl. Opt. 43, 6151-6156 (2004).
[CrossRef] [PubMed]

2002

R. Rao and Z. Gong, "High-frequency behavior of the temporal spectrum of laser beam propagating through turbulence," Proc. SPIE 4926, 175-180 (2002).
[CrossRef]

A. Al-habash, K. W. Fischer, C. S. Cornish, K. N. Desmet, and J. Nash, "Comparison between experimental and theoretical probability of fade for free space optical communications," Proc. SPIE 4873, 79-89 (2002).
[CrossRef]

2001

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, "Optical wireless propagation theory vs. experiment," Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

I. I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26-37 (2001).
[CrossRef]

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

2000

Y. Wang, C. Fan, X. Wu, J. Zhan, and Z. Gong, "Effects of non-uniform wind on the arrival angle temporal spectrum of spherical wave," Proc. SPIE 4125, 98-101 (2000).
[CrossRef]

1999

R. Rao, S. Wang, X. Liu, and Z. Gong, "Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere," J. Opt. Soc. Am. A 16, 2755-2762 (1999).
[CrossRef]

Y. E. Yenicea, R. Li, M. Takabeb, and T. Arugab, "Atmospheric turbulence measurements through stellar observations," Proc. SPIE 3615, 316-324 (1999).
[CrossRef]

1995

R. R. Beland, "Some aspects of propagation through weak isotropic non-Kolmogorov turbulence," Proc. SPIE 2375, 6-16 (1995).
[CrossRef]

M. S. Belen'kii, "Effect of the stratosphere on star image motion," Opt. Lett. 20, 1359-1361 (1995).
[CrossRef] [PubMed]

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, "Optical propagation in non-Kolmogorov atmospheric turbulence," Proc. SPIE 2471, 181-196 (1995).
[CrossRef]

1994

W. B. Miller, J. C. Ricklin, and L. C. Andrews, "Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam," J. Opt. Soc. Am. A. 11, 2719-2726 (1994).
[CrossRef]

1974

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, "Theory of optical scintillation," J. Opt. Soc. Am. 16, 1417-1429 (1974).
[CrossRef]

1971

1967

Al-habash, A.

A. Al-habash, K. W. Fischer, C. S. Cornish, K. N. Desmet, and J. Nash, "Comparison between experimental and theoretical probability of fade for free space optical communications," Proc. SPIE 4873, 79-89 (2002).
[CrossRef]

Al-Habash, M. A.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, "Theory of optical scintillation," J. Opt. Soc. Am. 16, 1417-1429 (1974).
[CrossRef]

Andrews, L. C.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

W. B. Miller, J. C. Ricklin, and L. C. Andrews, "Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam," J. Opt. Soc. Am. A. 11, 2719-2726 (1994).
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, "Theory of optical scintillation," J. Opt. Soc. Am. 16, 1417-1429 (1974).
[CrossRef]

Arugab, T.

Y. E. Yenicea, R. Li, M. Takabeb, and T. Arugab, "Atmospheric turbulence measurements through stellar observations," Proc. SPIE 3615, 316-324 (1999).
[CrossRef]

Beland, R. R.

R. R. Beland, "Some aspects of propagation through weak isotropic non-Kolmogorov turbulence," Proc. SPIE 2375, 6-16 (1995).
[CrossRef]

Belen'kii, M. S.

Brown, W.

W. Brown, B. Wallin, D. Lesniewski, D. Gooding, and J. Martin, "The experimental determination of on-off keying laser communications probability models and a comparison with theory," Proc. SPIE 6105, 61050U (2006).
[CrossRef]

Chiba, T.

Cornish, C. S.

A. Al-habash, K. W. Fischer, C. S. Cornish, K. N. Desmet, and J. Nash, "Comparison between experimental and theoretical probability of fade for free space optical communications," Proc. SPIE 4873, 79-89 (2002).
[CrossRef]

Curley, M. J.

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

Davis, C. C.

H. Yuksel and C. C. Davis, "Aperture averaging for studies of atmospheric turbulence and optimization of free space optical communication links" Proc. SPIE 5892, 58920P (2005).
[CrossRef]

Desmet, K. N.

A. Al-habash, K. W. Fischer, C. S. Cornish, K. N. Desmet, and J. Nash, "Comparison between experimental and theoretical probability of fade for free space optical communications," Proc. SPIE 4873, 79-89 (2002).
[CrossRef]

Eaton, F. D.

Y. Han Oh, J. C. Ricklin, E. S. Oh, and F. D. Eaton, "Evaluating optical turbulence effects on free-space laser communication: modeling and measurements at ARL�??s A_LOT facility," Proc. SPIE 5550, 247-255 (2004).
[CrossRef]

Edlin, G. R.

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

Fan, C.

Y. Wang, C. Fan, X. Wu, J. Zhan, and Z. Gong, "Effects of non-uniform wind on the arrival angle temporal spectrum of spherical wave," Proc. SPIE 4125, 98-101 (2000).
[CrossRef]

Fischer, K. W.

A. Al-habash, K. W. Fischer, C. S. Cornish, K. N. Desmet, and J. Nash, "Comparison between experimental and theoretical probability of fade for free space optical communications," Proc. SPIE 4873, 79-89 (2002).
[CrossRef]

Fried, D. L.

Ghayal, G.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, "Optical wireless propagation theory vs. experiment," Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Golbraikh, E.

Gong, Z.

R. Rao and Z. Gong, "High-frequency behavior of the temporal spectrum of laser beam propagating through turbulence," Proc. SPIE 4926, 175-180 (2002).
[CrossRef]

Y. Wang, C. Fan, X. Wu, J. Zhan, and Z. Gong, "Effects of non-uniform wind on the arrival angle temporal spectrum of spherical wave," Proc. SPIE 4125, 98-101 (2000).
[CrossRef]

R. Rao, S. Wang, X. Liu, and Z. Gong, "Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere," J. Opt. Soc. Am. A 16, 2755-2762 (1999).
[CrossRef]

Gooding, D.

W. Brown, B. Wallin, D. Lesniewski, D. Gooding, and J. Martin, "The experimental determination of on-off keying laser communications probability models and a comparison with theory," Proc. SPIE 6105, 61050U (2006).
[CrossRef]

Han Oh, Y.

Y. Han Oh, J. C. Ricklin, E. S. Oh, and F. D. Eaton, "Evaluating optical turbulence effects on free-space laser communication: modeling and measurements at ARL�??s A_LOT facility," Proc. SPIE 5550, 247-255 (2004).
[CrossRef]

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, "Theory of optical scintillation," J. Opt. Soc. Am. 16, 1417-1429 (1974).
[CrossRef]

Jiang, W.

C. Rao, W. Jiang, and N. Ling, "Atmospheric parameters measurements for non-Kolmogorov turbulence with Shack-Hartmann wavefront sensor," Proc. SPIE 3763, 84-91 (2006).
[CrossRef]

Keister, M. P.

Kim, I. I.

I. I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26-37 (2001).
[CrossRef]

Kopeika, N. S.

Korevaar, E.

I. I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26-37 (2001).
[CrossRef]

Larkin, M.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, "Optical wireless propagation theory vs. experiment," Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Lesniewski, D.

W. Brown, B. Wallin, D. Lesniewski, D. Gooding, and J. Martin, "The experimental determination of on-off keying laser communications probability models and a comparison with theory," Proc. SPIE 6105, 61050U (2006).
[CrossRef]

Li, R.

Y. E. Yenicea, R. Li, M. Takabeb, and T. Arugab, "Atmospheric turbulence measurements through stellar observations," Proc. SPIE 3615, 316-324 (1999).
[CrossRef]

Ling, N.

C. Rao, W. Jiang, and N. Ling, "Atmospheric parameters measurements for non-Kolmogorov turbulence with Shack-Hartmann wavefront sensor," Proc. SPIE 3763, 84-91 (2006).
[CrossRef]

Liu, X.

Martin, J.

W. Brown, B. Wallin, D. Lesniewski, D. Gooding, and J. Martin, "The experimental determination of on-off keying laser communications probability models and a comparison with theory," Proc. SPIE 6105, 61050U (2006).
[CrossRef]

McArthur, B.

I. I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26-37 (2001).
[CrossRef]

Mevers, G. E.

Miller, W. B.

W. B. Miller, J. C. Ricklin, and L. C. Andrews, "Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam," J. Opt. Soc. Am. A. 11, 2719-2726 (1994).
[CrossRef]

Nash, J.

A. Al-habash, K. W. Fischer, C. S. Cornish, K. N. Desmet, and J. Nash, "Comparison between experimental and theoretical probability of fade for free space optical communications," Proc. SPIE 4873, 79-89 (2002).
[CrossRef]

Nykolak, G.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, "Optical wireless propagation theory vs. experiment," Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Oh, E. S.

Y. Han Oh, J. C. Ricklin, E. S. Oh, and F. D. Eaton, "Evaluating optical turbulence effects on free-space laser communication: modeling and measurements at ARL�??s A_LOT facility," Proc. SPIE 5550, 247-255 (2004).
[CrossRef]

Paulson, B.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, "Optical wireless propagation theory vs. experiment," Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Peterson, B. H.

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

Phillips, R. L.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, "Theory of optical scintillation," J. Opt. Soc. Am. 16, 1417-1429 (1974).
[CrossRef]

Rao, C.

C. Rao, W. Jiang, and N. Ling, "Atmospheric parameters measurements for non-Kolmogorov turbulence with Shack-Hartmann wavefront sensor," Proc. SPIE 3763, 84-91 (2006).
[CrossRef]

Rao, R.

R. Rao and Z. Gong, "High-frequency behavior of the temporal spectrum of laser beam propagating through turbulence," Proc. SPIE 4926, 175-180 (2002).
[CrossRef]

R. Rao, S. Wang, X. Liu, and Z. Gong, "Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere," J. Opt. Soc. Am. A 16, 2755-2762 (1999).
[CrossRef]

Ricklin, J. C.

Y. Han Oh, J. C. Ricklin, E. S. Oh, and F. D. Eaton, "Evaluating optical turbulence effects on free-space laser communication: modeling and measurements at ARL�??s A_LOT facility," Proc. SPIE 5550, 247-255 (2004).
[CrossRef]

W. B. Miller, J. C. Ricklin, and L. C. Andrews, "Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam," J. Opt. Soc. Am. A. 11, 2719-2726 (1994).
[CrossRef]

Roggemann, M. C.

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, "Optical propagation in non-Kolmogorov atmospheric turbulence," Proc. SPIE 2471, 181-196 (1995).
[CrossRef]

Romain, D.

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, "Optical wireless propagation theory vs. experiment," Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

Rushing, J. F.

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

Sarkisov, S. S.

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

Snow, R. A.

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

Stribling, B. E.

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, "Optical propagation in non-Kolmogorov atmospheric turbulence," Proc. SPIE 2471, 181-196 (1995).
[CrossRef]

Takabeb, M.

Y. E. Yenicea, R. Li, M. Takabeb, and T. Arugab, "Atmospheric turbulence measurements through stellar observations," Proc. SPIE 3615, 316-324 (1999).
[CrossRef]

Tunick, A.

A. Tunick, "Statistical analysis of optical turbulence intensity over a 2.33 km propagation path," Opt. Express 15, 3619-3628 (2007).
[CrossRef] [PubMed]

A. Tunick, "Statistical analysis of measured free-space laser signal intensity over a 2.33 km propagation path," Opt. Express 15, 14115-14122 (2007).
[CrossRef] [PubMed]

Wallin, B.

W. Brown, B. Wallin, D. Lesniewski, D. Gooding, and J. Martin, "The experimental determination of on-off keying laser communications probability models and a comparison with theory," Proc. SPIE 6105, 61050U (2006).
[CrossRef]

Wang, J. C.

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

Wang, S.

Wang, Y.

Y. Wang, C. Fan, X. Wu, J. Zhan, and Z. Gong, "Effects of non-uniform wind on the arrival angle temporal spectrum of spherical wave," Proc. SPIE 4125, 98-101 (2000).
[CrossRef]

Welsh, B. M.

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, "Optical propagation in non-Kolmogorov atmospheric turbulence," Proc. SPIE 2471, 181-196 (1995).
[CrossRef]

Wu, X.

Y. Wang, C. Fan, X. Wu, J. Zhan, and Z. Gong, "Effects of non-uniform wind on the arrival angle temporal spectrum of spherical wave," Proc. SPIE 4125, 98-101 (2000).
[CrossRef]

Yenicea, Y. E.

Y. E. Yenicea, R. Li, M. Takabeb, and T. Arugab, "Atmospheric turbulence measurements through stellar observations," Proc. SPIE 3615, 316-324 (1999).
[CrossRef]

Yuksel, H.

H. Yuksel and C. C. Davis, "Aperture averaging for studies of atmospheric turbulence and optimization of free space optical communication links" Proc. SPIE 5892, 58920P (2005).
[CrossRef]

Zhan, J.

Y. Wang, C. Fan, X. Wu, J. Zhan, and Z. Gong, "Effects of non-uniform wind on the arrival angle temporal spectrum of spherical wave," Proc. SPIE 4125, 98-101 (2000).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, "Theory of optical scintillation," J. Opt. Soc. Am. 16, 1417-1429 (1974).
[CrossRef]

D. L. Fried, G. E. Mevers, and M. P. Keister, "Measurements of laser beam scintillation in the atmosphere," J. Opt. Soc. Am. 57, 787-797 (1967).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. A.

W. B. Miller, J. C. Ricklin, and L. C. Andrews, "Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam," J. Opt. Soc. Am. A. 11, 2719-2726 (1994).
[CrossRef]

Opt. Eng.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

Opt. Express.

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. SarkisovII, G. R. Edlin, R. A. Snow, and J. F. Rushing, "Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer," Opt. Express. 14, 8929-8946 (2006).
[CrossRef] [PubMed]

A. Tunick, "Statistical analysis of optical turbulence intensity over a 2.33 km propagation path," Opt. Express 15, 3619-3628 (2007).
[CrossRef] [PubMed]

A. Tunick, "Statistical analysis of measured free-space laser signal intensity over a 2.33 km propagation path," Opt. Express 15, 14115-14122 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

C. Rao, W. Jiang, and N. Ling, "Atmospheric parameters measurements for non-Kolmogorov turbulence with Shack-Hartmann wavefront sensor," Proc. SPIE 3763, 84-91 (2006).
[CrossRef]

R. R. Beland, "Some aspects of propagation through weak isotropic non-Kolmogorov turbulence," Proc. SPIE 2375, 6-16 (1995).
[CrossRef]

I. I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26-37 (2001).
[CrossRef]

Y. E. Yenicea, R. Li, M. Takabeb, and T. Arugab, "Atmospheric turbulence measurements through stellar observations," Proc. SPIE 3615, 316-324 (1999).
[CrossRef]

D. Romain, M. Larkin, G. Ghayal, B. Paulson, and G. Nykolak, "Optical wireless propagation theory vs. experiment," Proc. SPIE 4214, 38-45 (2001).
[CrossRef]

A. Al-habash, K. W. Fischer, C. S. Cornish, K. N. Desmet, and J. Nash, "Comparison between experimental and theoretical probability of fade for free space optical communications," Proc. SPIE 4873, 79-89 (2002).
[CrossRef]

W. Brown, B. Wallin, D. Lesniewski, D. Gooding, and J. Martin, "The experimental determination of on-off keying laser communications probability models and a comparison with theory," Proc. SPIE 6105, 61050U (2006).
[CrossRef]

H. Yuksel and C. C. Davis, "Aperture averaging for studies of atmospheric turbulence and optimization of free space optical communication links" Proc. SPIE 5892, 58920P (2005).
[CrossRef]

Y. Han Oh, J. C. Ricklin, E. S. Oh, and F. D. Eaton, "Evaluating optical turbulence effects on free-space laser communication: modeling and measurements at ARL�??s A_LOT facility," Proc. SPIE 5550, 247-255 (2004).
[CrossRef]

R. Rao and Z. Gong, "High-frequency behavior of the temporal spectrum of laser beam propagating through turbulence," Proc. SPIE 4926, 175-180 (2002).
[CrossRef]

B. E. Stribling, B. M. Welsh, and M. C. Roggemann, "Optical propagation in non-Kolmogorov atmospheric turbulence," Proc. SPIE 2471, 181-196 (1995).
[CrossRef]

Y. Wang, C. Fan, X. Wu, J. Zhan, and Z. Gong, "Effects of non-uniform wind on the arrival angle temporal spectrum of spherical wave," Proc. SPIE 4125, 98-101 (2000).
[CrossRef]

Other

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, Bellingham, 2001).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

An aerial photo of the optical path (data from maps. google.com)

Fig. 2.
Fig. 2.

Configuration of the experimental setup

Fig. 3.
Fig. 3.

Photograph of the receiving optics and the 3-dimensional adjustable table

Fig. 4.
Fig. 4.

Histograms of normalized light intensity and lognormal fitting curves (red lines) for trials T1(a), T2(b), T3(c) and T4(d).

Fig. 5.
Fig. 5.

R 2 versus σ 2 I for weak fluctuation trials

Fig. 6.
Fig. 6.

Histograms of normalized light intensity and negative exponential fitting curves (red lines) for trials T5(a) and T6(b).

Fig. 7.
Fig. 7.

R 2 versus σ 2 I for strong fluctuation trials

Fig. 8.
Fig. 8.

Fade statistics for trials T2, T4 and T5.

Fig. 9.
Fig. 9.

Power spectra for trials T1(a), T2(b), T3(c) and T5(d). Power exponents of high-frequency spectra are annotated on each graph

Fig. 10.
Fig. 10.

Power exponents of high-frequency spectrum versus σ 2 I

Fig. 11.
Fig. 11.

Daily variation of scintillation index

Fig. 12.
Fig. 12.

Daily variation of C 2 n

Tables (1)

Tables Icon

Table 1. Climate characteristics for the experimental data set

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σ I 2 = I 2 I 2 1 ,
σ 1 2 = 1.23 C n 2 k 7 6 L 11 6 ,
p w ( I ) = 1 2 π σ I 2 1 I exp [ ( ln I + σ I 2 2 ) 2 2 σ I 2 ] ,
p s ( I ) = 1 I exp [ I I ] .
R = Y · y Y · y DY · Dy ,
P ( I I T ) = 0 I T p ( I ) d I ,
F T = 10 lg ( I I T ) .
σ β 2 = 1.093 C n 2 LD 1 3 [ a + 0.618 Λ 11 6 ( kD 2 L ) 1 3 ] ,
a = 1 Θ 8 3 1 Θ ,
Θ = 1 L F ,
Λ = 2 L kW 2 ,
σ β 2 1.093 C n 2 LD 1 3 ,
C n 2 σ β 2 1.093 LD 1 3 .
σ I 2 = σ 0 2 + 4.42 σ 1 2 Λ 5 6 r 2 W 2

Metrics