Abstract

We report the direct experimental observation of photonic nanojets created by single latex microspheres illuminated by a plane wave at a wavelength of 520 nm. Measurements are performed with a fast scanning confocal microscope in detection mode, where the detection pinhole defines a diffraction-limited observation volume that is scanned in three dimensions over the microsphere vicinity. From the collected stack of images, we reconstruct the full 3 dimensional photonic nanojet beam. Observations are conducted for polystyrene spheres of 1, 3 and 5 µm diameter deposited on a glass substrate, the upper medium being air or water. Experimental results are compared to calculations performed using the Mie theory. We measure nanojet sizes as small as 270 nm FWHM for a 3 µm sphere at a wavelength λ of 520 nm. The beam keeps a subwavelength FWHM over a propagation distance of more than 3 λ, displaying all the specificities of a photonic nanojet.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
    [CrossRef] [PubMed]
  2. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
    [CrossRef] [PubMed]
  3. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a 3D photonic jet," Opt. Lett. 30, 2641-2643 (2005).
    [CrossRef] [PubMed]
  4. A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22, 2847-2858 (2005).
    [CrossRef]
  5. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
    [CrossRef] [PubMed]
  6. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
    [CrossRef]
  7. M. Gerlach, Y. P. Rakovich and J. F. Donegan, "Nanojets and directional emission in symmetric photonic molecules," Opt. Express 15, 17343-17350 (2007).
    [CrossRef] [PubMed]
  8. M. Mosbacher, H.-J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
    [CrossRef]
  9. K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
    [CrossRef]
  10. B. S. Luk�??yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).
  11. B. S. Luk�??yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, "Particle on surface: 3D-effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 79, 747-751 (2004).
    [CrossRef]
  12. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
    [CrossRef]
  13. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, and Z. B. Wang, "Near-field enhanced femtosecond laser nano-drilling of glass substrate," J. Alloys Compd. 449, 246-249 (2008).
    [CrossRef]
  14. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, C. Hirlimann, "Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007).
    [CrossRef] [PubMed]
  15. Note that the laser source of our LSCM system was not used in the present work. Literally speaking, the term "confocal" is not appropriate here due to the wide field excitation used. See for instance Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, A. Diaspro, ed., (Wiley-Liss, New York, 2002).
  16. J. Enderlein and C. Zander, "Theoretical Foundations of Single Molecule Detection in Solution," in Single molecule detection in solution, C. Zander, J. Enderlein, and R. A. Keller, eds., (Wiley-VCH, Berlin, Germany), pp. 21-67.
  17. W. S. Rasband, "ImageJ," U. S. National Institutes of Health, Bethesda, Maryland, USA (1997-2007), http://rsb.info.nih.gov/ij/.
  18. R. P. Dougherty, OptiNav, Inc., "Iterative Deconvolve 3D plugin for ImageJ," http://www.optinav.com/imagej.html, accessed Dec. 8, 2007.
  19. K. U. Barthel, FHTW Berlin, "Volume Viewer plugin for ImageJ," http://rsb.info.nih.gov/ij/plugins/volumeviewer. html, accessed Dec. 8, 2007.
  20. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, UK, 2002).
  21. B. Stout, J. C. Auger, and J. Lafait, "Individual and aggregate scattering matrices and cross sections: conservation laws and reciprocity," J. Mod. Opt. 48, 2105-2128 (2001).
  22. B. Stout, C. Andraud, S. Stout, and J. Lafait, "Absorption in multiple scattering systems of coated spheres," J. Opt. Soc. Am. A 20, 1050-1059 (2003).
    [CrossRef]
  23. B. Stout, M. Nevière, and E. Popov, "Light diffraction by a three-dimensional object: differential theory," J. Opt. Soc. Am. A 22, 2385-2404 (2005).
    [CrossRef]

2008 (1)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, and Z. B. Wang, "Near-field enhanced femtosecond laser nano-drilling of glass substrate," J. Alloys Compd. 449, 246-249 (2008).
[CrossRef]

2007 (3)

2006 (2)

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

2005 (4)

2004 (2)

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
[CrossRef] [PubMed]

B. S. Luk�??yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, "Particle on surface: 3D-effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 79, 747-751 (2004).
[CrossRef]

2003 (2)

B. S. Luk�??yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

B. Stout, C. Andraud, S. Stout, and J. Lafait, "Absorption in multiple scattering systems of coated spheres," J. Opt. Soc. Am. A 20, 1050-1059 (2003).
[CrossRef]

2002 (1)

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

2001 (2)

M. Mosbacher, H.-J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

B. Stout, J. C. Auger, and J. Lafait, "Individual and aggregate scattering matrices and cross sections: conservation laws and reciprocity," J. Mod. Opt. 48, 2105-2128 (2001).

Andraud, C.

Arnold, N.

B. S. Luk�??yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Auger, J. C.

B. Stout, J. C. Auger, and J. Lafait, "Individual and aggregate scattering matrices and cross sections: conservation laws and reciprocity," J. Mod. Opt. 48, 2105-2128 (2001).

Backman, V.

Bäuerle, D.

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

Boneberg, J.

M. Mosbacher, H.-J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Challener, W. A.

Chen, Z.

Chong, T. C.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

Crégut, O.

Denk, R.

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

Donegan, J. F.

Fuh, J. Y. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, and Z. B. Wang, "Near-field enhanced femtosecond laser nano-drilling of glass substrate," J. Alloys Compd. 449, 246-249 (2008).
[CrossRef]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

Gerlach, M.

Haacke, S.

Heifetz, A.

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Hirlimann, C.

Hong, M. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, and Z. B. Wang, "Near-field enhanced femtosecond laser nano-drilling of glass substrate," J. Alloys Compd. 449, 246-249 (2008).
[CrossRef]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

B. S. Luk�??yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, "Particle on surface: 3D-effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 79, 747-751 (2004).
[CrossRef]

B. S. Luk�??yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Huang, S. M.

B. S. Luk�??yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Itagi, A. V.

Kong, S.-C.

Lafait, J.

B. Stout, C. Andraud, S. Stout, and J. Lafait, "Absorption in multiple scattering systems of coated spheres," J. Opt. Soc. Am. A 20, 1050-1059 (2003).
[CrossRef]

B. Stout, J. C. Auger, and J. Lafait, "Individual and aggregate scattering matrices and cross sections: conservation laws and reciprocity," J. Mod. Opt. 48, 2105-2128 (2001).

Lecler, S.

Lecong, N.

Leiderer, P.

M. Mosbacher, H.-J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Li, X.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
[CrossRef] [PubMed]

Lu, L.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, and Z. B. Wang, "Near-field enhanced femtosecond laser nano-drilling of glass substrate," J. Alloys Compd. 449, 246-249 (2008).
[CrossRef]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

Luk???yanchuk, B. S.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, and Z. B. Wang, "Near-field enhanced femtosecond laser nano-drilling of glass substrate," J. Alloys Compd. 449, 246-249 (2008).
[CrossRef]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

B. S. Luk�??yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, "Particle on surface: 3D-effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 79, 747-751 (2004).
[CrossRef]

B. S. Luk�??yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Meyrueis, P.

Mosbacher, M.

M. Mosbacher, H.-J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Munzer, H.-J.

M. Mosbacher, H.-J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Nevière, M.

Piglmayer, K.

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

Popov, E.

Rakovich, Y. P.

Rehspringer, J.-L.

Sahakian, A. V.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Shi, L. P.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

Simpson, J. J.

Solis, J.

M. Mosbacher, H.-J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Song, W. D.

B. S. Luk�??yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, "Particle on surface: 3D-effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 79, 747-751 (2004).
[CrossRef]

Stout, B.

Stout, S.

Taflove, A.

Takakura, Y.

Wang, Z. B.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, and Z. B. Wang, "Near-field enhanced femtosecond laser nano-drilling of glass substrate," J. Alloys Compd. 449, 246-249 (2008).
[CrossRef]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

B. S. Luk�??yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, "Particle on surface: 3D-effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 79, 747-751 (2004).
[CrossRef]

B. S. Luk�??yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

Zhou, Y.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, and Z. B. Wang, "Near-field enhanced femtosecond laser nano-drilling of glass substrate," J. Alloys Compd. 449, 246-249 (2008).
[CrossRef]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

Zimmermann, J.

M. Mosbacher, H.-J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process. (3)

M. Mosbacher, H.-J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, "Optical field enhancement effects in laser-assisted particle removal," Appl. Phys. A: Mater. Sci. Process. 72, 41-44 (2001).
[CrossRef]

B. S. Luk�??yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, "Three-dimensional effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 77, 209-215 (2003).

B. S. Luk�??yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, "Particle on surface: 3D-effects in dry laser cleaning," Appl. Phys. A: Mater. Sci. Process. 79, 747-751 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, "Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement," Appl. Phys. Lett. 88, 023110 (2006).
[CrossRef]

K. Piglmayer, R. Denk, and D. Bäuerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

J. Alloys Compd. (1)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk�??yanchuk, and Z. B. Wang, "Near-field enhanced femtosecond laser nano-drilling of glass substrate," J. Alloys Compd. 449, 246-249 (2008).
[CrossRef]

J. Mod. Opt. (1)

B. Stout, J. C. Auger, and J. Lafait, "Individual and aggregate scattering matrices and cross sections: conservation laws and reciprocity," J. Mod. Opt. 48, 2105-2128 (2001).

J. Opt. Soc. Am. A (3)

Opt. Express (5)

Opt. Lett. (1)

Other (6)

Note that the laser source of our LSCM system was not used in the present work. Literally speaking, the term "confocal" is not appropriate here due to the wide field excitation used. See for instance Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, A. Diaspro, ed., (Wiley-Liss, New York, 2002).

J. Enderlein and C. Zander, "Theoretical Foundations of Single Molecule Detection in Solution," in Single molecule detection in solution, C. Zander, J. Enderlein, and R. A. Keller, eds., (Wiley-VCH, Berlin, Germany), pp. 21-67.

W. S. Rasband, "ImageJ," U. S. National Institutes of Health, Bethesda, Maryland, USA (1997-2007), http://rsb.info.nih.gov/ij/.

R. P. Dougherty, OptiNav, Inc., "Iterative Deconvolve 3D plugin for ImageJ," http://www.optinav.com/imagej.html, accessed Dec. 8, 2007.

K. U. Barthel, FHTW Berlin, "Volume Viewer plugin for ImageJ," http://rsb.info.nih.gov/ij/plugins/volumeviewer. html, accessed Dec. 8, 2007.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, UK, 2002).

Supplementary Material (1)

» Media 1: AVI (1561 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the observation setup (not to scale). The observation volume can be scanned in 3D by acting on both scanner and focus. Inset: Measured CEF for the system.

Fig. 2.
Fig. 2.

Raw stack of images taken for a 5 µm sphere illuminated at λ=520 nm. The microsphere is deposited on a glass substrate, the upper medium is air. The detection plane moves upwards (towards the bead) by steps of 500 nm between each 2D scan.

Fig. 3.
Fig. 3.

(a) Reconstruction of the photonic jet generated by a 5 µm microsphere viewed along the optical axis. This refers to the stack of raw data displayed on Fig. 2. The effects of the CEF of our apparatus have been corrected here by numerical deconvolution (see text for details). The microsphere position is indicated by a white circle. (b) Cut along the horizontal axis at the best focus point. Red dots correspond to the measured data after CEF deconvolution, solid line is a Gaussian fit that emphasizes the Gaussian lineshape of the profile. (c) Intensity cut along the vertical axis at the center of the jet. Blue dots correspond to the measured data after CEF deconvolution. Solid line is a Lorenzian fit. The intensity has been normalized so that the incoming intensity (calibrated well outside the bead vicinity) is set to unity. Therefore, this cut directly shows the intensity concentration (enhancement) inside the photonic jet. (d) Full width at half maximum (FWHM) of the photonic jet measured for each 2D scan after CEF deconvolution (green dots). The dashed line corresponds to the FWHM of our numerical simulation for a 5 µm latex bead free standing in air.

Fig. 4.
Fig. 4.

Same as Fig. 2 for a sphere of 3 µm diameter.

Fig. 5.
Fig. 5.

Same as Fig. 3 for a sphere of 3 µm diameter.

Fig. 6.
Fig. 6.

(1520 KB) Movie of the reconstructed photonic jet for a 3 µm sphere. [Media 1]

Fig. 7.
Fig. 7.

Same as Fig. 2 for a sphere of 1 µm diameter.

Fig. 8.
Fig. 8.

Same as Fig. 3 for a sphere of 1 µm diameter.

Fig. 9.
Fig. 9.

Distribution of intensity obtained by numerical simulations. (a) Case of a 5 µm sphere. Dependance of FWHM of the jet versus propagation distance was plotted in Fig. 3 (d). (b) Case of a 3 µm sphere. Dependance of FWHM of the jet versus propagation distance was plotted in Fig. 5 (d). For both figures, the corresponding sphere location and size are indicated by a white circle. Note that the color levels have been normalized independently.

Fig. 10.
Fig. 10.

Same as Fig. 2 for a group of 3 spheres of 3 µm diameter. Note that in this particular case, the detection plane moves towards the spheres by steps of 1 µm between each 2D scan.

Tables (1)

Tables Icon

Table 1. Summary of nanojet FWHM and intensity enhancement values measured for different spheres diameters and different refractive indices of the upper medium.

Metrics